A Middleware Transparent Framework for Applying MDA to SOA

Although Model Driven Architecture has taken successful steps toward model-based software development, this approach still faces complex situations and ambiguous questions while applying to real world software systems. One of these questions - which has taken the most interest and focus - is how model transforms between different abstraction levels, MDA proposes. In this paper, we propose an approach based on Story Driven Modeling and Aspect Oriented Programming to ease these transformations. Service Oriented Architecture is taken as the target model to test the proposed mechanism in a functional system. Service Oriented Architecture and Model Driven Architecture [1] are both considered as the frontiers of their own domain in the software world. Following components - which was the greatest step after object oriented - SOA is introduced, focusing on more integrated and automated software solutions. On the other hand - and from the designers' point of view - MDA is just initiating another evolution. MDA is considered as the next big step after UML in designing domain.

The Impact of Semantic Web on E-Commerce

Semantic Web Technologies enable machines to interpret data published in a machine-interpretable form on the web. At the present time, only human beings are able to understand the product information published online. The emerging semantic Web technologies have the potential to deeply influence the further development of the Internet Economy. In this paper we propose a scenario based research approach to predict the effects of these new technologies on electronic markets and business models of traders and intermediaries and customers. Over 300 million searches are conducted everyday on the Internet by people trying to find what they need. A majority of these searches are in the domain of consumer ecommerce, where a web user is looking for something to buy. This represents a huge cost in terms of people hours and an enormous drain of resources. Agent enabled semantic search will have a dramatic impact on the precision of these searches. It will reduce and possibly eliminate information asymmetry where a better informed buyer gets the best value. By impacting this key determinant of market prices semantic web will foster the evolution of different business and economic models. We submit that there is a need for developing these futuristic models based on our current understanding of e-commerce models and nascent semantic web technologies. We believe these business models will encourage mainstream web developers and businesses to join the “semantic web revolution."

Sandvik Ceramic Cutting Tool Tests with an Interrupted Cut Simulator

The paper is dealing by testing of ceramic cutting tools with an interrupted machining. Tests will be provided on fixture – interrupted cut simulator. This simulator has 4 mouldings on circumference and cutting edge is put a shocks during 1 revolution. Criteria of tool wear are destruction of cutting tool or 6000 shocks. Like testing cutting tool material will be products of Sandvik Coromant 6190, 620, 650 and 670. Machined materials was be steels 15 128 (13MoCrV6). Cutting speed (408 m.min-1 and 580 m.min-1) and cutting feed (0,15 mm; 0,2 mm; 0,25 mm and 0,3 mm) were variable parameters and cutting depth was constant parameter.

Hippocampus Segmentation using a Local Prior Model on its Boundary

Segmentation techniques based on Active Contour Models have been strongly benefited from the use of prior information during their evolution. Shape prior information is captured from a training set and is introduced in the optimization procedure to restrict the evolution into allowable shapes. In this way, the evolution converges onto regions even with weak boundaries. Although significant effort has been devoted on different ways of capturing and analyzing prior information, very little thought has been devoted on the way of combining image information with prior information. This paper focuses on a more natural way of incorporating the prior information in the level set framework. For proof of concept the method is applied on hippocampus segmentation in T1-MR images. Hippocampus segmentation is a very challenging task, due to the multivariate surrounding region and the missing boundary with the neighboring amygdala, whose intensities are identical. The proposed method, mimics the human segmentation way and thus shows enhancements in the segmentation accuracy.

Reentry Trajectory Optimization Based on Differential Evolution

Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.

Numerical Investigation of the Optimal Spatial Domain Discretization for the 2-D Analysis of a Darrieus Vertical-Axis Water Turbine

The optimal grid spacing and turbulence model for the 2D numerical analysis of a vertical-axis water turbine (VAWaterT) operating in a 2 m/s freestream current has been investigated. The results of five different spatial domain discretizations and two turbulence models (k-ω SST and k-ε RNG) have been compared, in order to gain the optimal y+ parameter distribution along the blade walls during a full rotor revolution. The resulting optimal mesh has appeared to be quite similar to that obtained for the numerical analysis of a vertical-axis wind turbine.

Selective Harmonic Elimination of PWM AC/AC Voltage Controller Using Hybrid RGA-PS Approach

Selective harmonic elimination-pulse width modulation techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. Traditional optimization methods suffer from various drawbacks, such as prolonged and tedious computational steps and convergence to local optima; thus, the more the number of harmonics to be eliminated, the larger the computational complexity and time. This paper presents a novel method for output voltage harmonic elimination and voltage control of PWM AC/AC voltage converters using the principle of hybrid Real-Coded Genetic Algorithm-Pattern Search (RGA-PS) method. RGA is the primary optimizer exploiting its global search capabilities, PS is then employed to fine tune the best solution provided by RGA in each evolution. The proposed method enables linear control of the fundamental component of the output voltage and complete elimination of its harmonic contents up to a specified order. Theoretical studies have been carried out to show the effectiveness and robustness of the proposed method of selective harmonic elimination. Theoretical results are validated through simulation studies using PSIM software package.

An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials

This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.

Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Sorting Primitives and Genome Rearrangementin Bioinformatics: A Unified Perspective

Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and proteinprotein interactions, and the modeling of evolution. Various global rearrangements of permutations, such as reversals and transpositions,have recently become of interest because of their applications in computational molecular biology. A reversal is an operation that reverses the order of a substring of a permutation. A transposition is an operation that swaps two adjacent substrings of a permutation. The problem of determining the smallest number of reversals required to transform a given permutation into the identity permutation is called sorting by reversals. Similar problems can be defined for transpositions and other global rearrangements. In this work we perform a study about some genome rearrangement primitives. We show how a genome is modelled by a permutation, introduce some of the existing primitives and the lower and upper bounds on them. We then provide a comparison of the introduced primitives.

Petrology and Geochemistry of Granitic Rocks in South Sulawesi, Indonesia: Implication for Origin of Magma and Geodynamic Setting

Petrology and geochemical characteristics of granitic rocks from South Sulawesi, especially from Polewaliand Masamba area are presented in order to elucidate their origin of magma and geodynamic setting. The granitic rocks in these areas are dominated by granodiorite and granite in composition. Quartz, K-feldspar and plagioclase occur as major phases with hornblende and biotite as major ferromagnesian minerals. All of the samples were plotted in calc-alkaline field, show metaluminous affinity and typical of I-type granitic rock. Harker diagram indicates that granitic rocks experienced fractional crystallization during magmatic evolution. Both groups displayed an extreme enrichment of LILE, LREE and a slight negative Eu anomaly which resemble upper continental crust affinity. They were produced from partial melting of upper continental crust and have close relationship of sources composition within a suite. The geochemical characteristics explained the arc related subduction environment which later give an evidence of continent-continent collision between Australia-derived microcontinent and Sundalandto form continental arc environment.