The Necessity of Biomass Application for Developing Combined Heat and Power (CHP)with Biogas Fuel: Case Study

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Biochemical and Multiplex PCR Analysis of Toxic Crystal Proteins to Determine Genes in Bacillus thuringiensis Mutants

The Egyptian Bacillus thuringiensis isolate (M5) produce crystal proteins that is toxic against insects was irradiated with UV light to induce mutants. Upon testing 10 of the resulting mutants for their toxicity against cotton leafworm larvae, the three mutants 62, 64 and 85 proved to be the most toxic ones. Upon testing these mutants along with their parental isolate by SDS-PAGE analysis of spores-crystals proteins as well as vegetative cells proteins, new induced bands appeared in the three mutants by UV radiation and also they showed disappearance of some other bands as compared with the wild type isolate. Multiplex PCR technique, with five sets of specific primers, was used to detect the three types of cryI genes cryIAa, cryIAb and cryIAc. Results showed that these three genes exist, as distinctive bands, in the wild type isolate (M5) as well as in mutants 62 and 85, while the mutant 64 had two distinctive bands of cryIAb and cryIAc genes, and a faint band of cryI Aa gene. Finally, these results revealed that mutant 62 is considered as the promising mutant since it is UV resistant, highly toxic against Spodoptera littoralis and active against a wide range of Lepidopteran insects.

Effect of Processing on Sensory Characteristics and Chemical Composition of Cottonseed (Gossypium hirsutum) and Its Extract

The seeds of cotton (Gossypium hirsutum) fall among the lesser known oil seeds. Cottonseeds are not normally consumed in their natural state due to their gossypol content, an antinutrient. The effect of processing on the sensory characteristics and chemical composition of cottonseed and its extract was studied by subjecting the cottonseed extract to heat treatment (boiling) and the cottonseed to fermentation. The cottonseed extract was boiled using the open pot and the pressure pot for 30 minutes respectively. The fermentation of the cottonseed was carried out for 6 days with samples withdrawn at intervals of 2 days. The extract and fermented samples were subjected to chemical analysis and sensory evaluated for colour, aroma, taste, mouth feel, appearance and overallacceptability. The open pot sample was more preferred. Fermentation for 6 days resulted into a significant reduction in gossypol level of the cottonseed; however, sample fermented for 2 days was most preferred.

Evaluation of Radiation Synthesized β-Glucan Hydrogel Wound Dressing using Rat Models

In this study, hydrogels consisted of polyvinyl alcohol, propylene glycol and β-glucan were developed by radiation technique for wound dressing. The prepared hydrogels were characterized by examining of physical properties such as gel fraction and absorption ratio. The gel fraction and absorption ratio were dependent on the crosslinking density. On observing the wound healing of rat skin, the resulting hydrogels accelerated the wound healing comparing to cotton gauze. Therefore, the PVA/propylene glycol/β-glucan blended hydrogels can greatly accelerate the healing without causing irritation.

Effects of Irradiation to Morphological, Physicochemical and Biocompatibility Properties of Carrageenan

The characterization of κ-carrageenan could provide a better understanding of its functions in biological, medical and industrial applications. Chemical and physical analyses of carrageenan from seaweeds, Euchema cottonii L., were done to offer information on its properties and the effects of Co-60 γ-irradiation on its thermochemical characteristics. The structural and morphological characteristics of κ-carrageenan were determined using scanning electron microscopy (SEM) while the composition, molecular weight and thermal properties were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Further chemical analysis was done using hydrogen-1 nuclear magnetic resonance (1H NMR) and functional characteristics in terms of biocompatibility were evaluated using cytotoxicity test.

Influence of Compactive Efforts on Cement- Bagasse Ash Treatment of Expansive Black Cotton Soil

A laboratory study on the influence of compactive effort on expansive black cotton specimens treated with up to 8% ordinary Portland cement (OPC) admixed with up to 8% bagasse ash (BA) by dry weight of soil and compacted using the energies of the standard Proctor (SP), West African Standard (WAS) or “intermediate” and modified Proctor (MP) were undertaken. The expansive black cotton soil was classified as A-7-6 (16) or CL using the American Association of Highway and Transportation Officials (AASHTO) and Unified Soil Classification System (USCS), respectively. The 7day unconfined compressive strength (UCS) values of the natural soil for SP, WAS and MP compactive efforts are 286, 401 and 515kN/m2 respectively, while peak values of 1019, 1328 and 1420kN/m2 recorded at 8% OPC/ 6% BA, 8% OPC/ 2% BA and 6% OPC/ 4% BA treatments, respectively were less than the UCS value of 1710kN/m2 conventionally used as criterion for adequate cement stabilization. The soaked California bearing ratio (CBR) values of the OPC/BA stabilized soil increased with higher energy level from 2, 4 and 10% for the natural soil to Peak values of 55, 18 and 8% were recorded at 8% OPC/4% BA 8% OPC/2% BA and 8% OPC/4% BA, treatments when SP, WAS and MP compactive effort were used, respectively. The durability of specimens was determined by immersion in water. Soils treatment at 8% OPC/ 4% BA blend gave a value of 50% resistance to loss in strength value which is acceptable because of the harsh test condition of 7 days soaking period specimens were subjected instead of the 4 days soaking period that specified a minimum resistance to loss in strength of 80%. Finally An optimal blend of is 8% OPC/ 4% BA is recommended for treatment of expansive black cotton soil for use as a sub-base material.

Carrageenan Properties Extracted From Eucheuma cottonii, Indonesia

The effect of extraction solvent upon properties of carrageenan from Eucheuma cottonii was studied. The distilled water and KOH solution (concentration 0.1- 0.5N) were used as the solvent. Extraction process was carried out in water bath equipped by stirrer with constant speed of 275 rpm with a constant ratio of seaweed weight to solvent volume ( 1:50 g/mL) at 86oC for 45 minutes. The extract was then precipitated in 3 volume of 90% ethanol, oven dried at 60oC. Based on experimental data, alkali significantly influenced yield and properties of extracted carrageenan. The extracted carrageenan was found to have essentially identical FTIR spectra to the reference samples of kappa-carrageenan. Increasing the KOH concentration led to carrageenan containing less sulfate content and intrinsic viscosity. The gel strength increased along with the increasing of KOH concentration. The decreasing of intrinsic viscosity value indicates that a polymer degradation occurs during alkali extraction.

Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.

Corporate Social Responsibility Practices of the Textile Firms Quoted in Istanbul Stock Exchange

Corporate social responsibility (CSR) can be defined as the management of social, environmental, economical and ethical concepts and firms sensivities to the expectations of the social stakeholders. CSR is seen as an important competitive advantage in the textile sector because this sector has an important impact on the environment and it is labor extensive. Textile sector has a strong advantage when compared with other sectors in Turkey due to its low labor costs and abundancy of raw materials. Turkey was a producer and an exporter of cotton, and an importer of fiber, clothes and dresses until 1950s. After 1950s, Turkey has begun to export fiber, ready-made clothes and become one of the most important textile producers in the world recently. CSR practices of the textile firms that are quoted in Istanbul Stock Exchange and these firms sensivities to their internal and external stakeholders and environment will be presented in this study.

Incidence of Pathogenic Bacteria in Cakes and Tarts Displayed for Sale in Tripoli, Libya

This study was conducted to investigate the incidence of pathogenic bacteria: Salmonella, Shigella, Escherichia coli O157 and Staphylococcus aureus in cakes and tarts collected from thirtyfive confectionery producing and selling premises located within Tripoli city, Libya. The results revealed an incidence of S. aureus with 94.4 and 48.0 %, E. coli O157 with 14.7 and 4.0 % and Salmonella sp. with 5.9 and 8.0 % in cakes and tarts samples respectively; while Shigella was not detected in all samples. In order to determine the source of these pathogenic bacteria, cotton swabs were taken from the hands of workers on the production line, the surfaces of preparation tables and cream whipping instruments. The results showed that the cotton swabs obtained from the hands of workers contained S. aureus and Salmonella sp. with an incidence of 42.9 and 2.9 %, the cotton swabs obtained from the surfaces of preparation tables 22.9 and 2.9 % and the cotton swabs obtained from the cream whipping instruments 14.3 and 0.0 % respectively; while E. coli O157 and Shigella sp. were not detected in all swabs. Additionally, other bacteria were isolated from the hands of workers and the Surfaces of producing equipments included: Aeromonas sp., Pseudomonas sp., E. coli, Klebsiella sp., Enterobacter sp., Citrobacter sp., Proteus sp., Serratia sp. and Acinetobacter sp. These results indicate that some of the cakes and tarts might pose threat to consumer's health. Meanwhile, occurrences of pathogenic bacteria on the hands of those who are working in production line and the surfaces of equipments reflect poor hygienic practices at most confectionery premises examined in this study. Thus, firm and continuous surveillance of these premises is needed to insure the consumer's health and safety.

Satellite Sensing for Evaluation of an Irrigation System in Cotton - Wheat Zone

Efficient utilization of existing water is a pressing need for Pakistan. Due to rising population, reduction in present storage capacity and poor delivery efficiency of 30 to 40% from canal. A study to evaluate an irrigation system in the cotton-wheat zone of Pakistan, after the watercourse lining was conducted. The study is made on the basis of cropping pattern and salinity to evaluate the system. This study employed an index-based approach of using Geographic information system with field data. The satellite images of different years were use to examine the effective area. Several combinations of the ratio of signals received in different spectral bands were used for development of this index. Near Infrared and Thermal IR spectral bands proved to be most effective as this combination helped easy detection of salt affected area and cropping pattern of the study area. Result showed that 9.97% area under salinity in 1992, 9.17% in 2000 and it left 2.29% in year 2005. Similarly in 1992, 45% area is under vegetation it improves to 56% and 65% in 2000 and 2005 respectively. On the basis of these results evaluation is done 30% performance is increase after the watercourse improvement.

Atmospheric Plasma Innovative Roll-to-Roll Machine for Continuous Materials

Atmospheric plasma is emerging as a promising technology for many industrial sectors, because of its ecological and economic advantages respect to the traditional production processes. For textile industry, atmospheric plasma is becoming a valid alternative to the conventional wet processes, but the plasma machines realized so far do not allow the treatment of fibrous mechanically weak material. Novel atmospheric plasma machine for industrial applications, developed by VenetoNanotech SCpA in collaboration with Italian producer of corona equipment ME.RO SpA is presented. The main feature of this pre-industrial scale machine is the possibility of the inline plasma treatment of delicate fibrous substrates such as fibre sleeves, for example wool tops, cotton fibres, polymeric tows, mineral fibers and so on, avoiding burnings and disruption of the faint materials.

Use of Pesticides and Their Role in Environmental Pollution

Insect pests are the major source of crop damage, yield and quality reduction in Pakistan and else where in the world. Cotton crop is the most hit crop in Pakistan followed by rice and the second most important foreign exchange earning crop. A wide variety of staple, horticultural and cash crops grown, reflect serious problems of many types of insect pests. To overcome the insect pest problem, pesticide use in Pakistan has increased substantially which has now been further intensified. Pesticides worth more than billions of rupees are imported every year. This paper reviews the over all pesticide use in Pakistan in relation to pesticide prices, support price of cotton and rice, pesticide use in different provinces of Pakistan on different crops and their impact on crop productivity. The environmental pollution caused by the use of pesticides, contamination of soil and water resources and the danger associated with the disposal of their empty containers is also discussed in detail.

The Necessity of Biomass Application for Developing Combined Heat and Power(CHP) with Biogas Fuel: Case Study

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

A Software for Calculation of Optimum Conditions for Cotton Bobbin Drying in a Hot-Air Bobbin Dryer

In this study, a software has been developed to predict the optimum conditions for drying of cotton based yarn bobbins in a hot air dryer. For this purpose, firstly, a suitable drying model has been specified using experimental drying behavior for different values of drying parameters. Drying parameters in the experiments were drying temperature, drying pressure, and volumetric flow rate of drying air. After obtaining a suitable drying model, additional curve fittings have been performed to obtain equations for drying time and energy consumption taking into account the effects of drying parameters. Then, a software has been developed using Visual Basic programming language to predict the optimum drying conditions for drying time and energy consumption.