Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation

Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.

RFU Based Computational Unit Design For Reconfigurable Processors

Fully customized hardware based technology provides high performance and low power consumption by specializing the tasks in hardware but lacks design flexibility since any kind of changes require re-design and re-fabrication. Software based solutions operate with software instructions due to which a great flexibility is achieved from the easy development and maintenance of the software code. But this execution of instructions introduces a high overhead in performance and area consumption. In past few decades the reconfigurable computing domain has been introduced which overcomes the traditional trades-off between flexibility and performance and is able to achieve high performance while maintaining a good flexibility. The dramatic gains in terms of chip performance and design flexibility achieved through the reconfigurable computing systems are greatly dependent on the design of their computational units being integrated with reconfigurable logic resources. The computational unit of any reconfigurable system plays vital role in defining its strength. In this research paper an RFU based computational unit design has been presented using the tightly coupled, multi-threaded reconfigurable cores. The proposed design has been simulated for VLIW based architectures and a high gain in performance has been observed as compared to the conventional computing systems.