An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts

There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.

Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments

Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.

Teaching Computer Programming to Diverse Students: A Comparative, Mixed-Methods, Classroom Research Study

Lack of motivation and interest is a serious obstacle to students’ learning computing skills. A need exists for a knowledge base on effective pedagogy and curricula to teach computer programming. This paper presents results from research evaluating a six-year project designed to teach complex concepts in computer programming collaboratively, while supporting students to continue developing their computer thinking and related coding skills individually. Utilizing a quasi-experimental, mixed methods design, the pedagogical approaches and methods were assessed in two contrasting groups of students with different socioeconomic status, gender, and age composition. Analyses of quantitative data from Likert-scale surveys and an evaluation rubric, combined with qualitative data from reflective writing exercises and semi-structured interviews yielded convincing evidence of the project’s success at both teaching and inspiring students.