Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier

Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.

A study of Cancer-related MicroRNAs through Expression Data and Literature Search

MicroRNAs (miRNAs) are a class of non-coding RNAs that hybridize to mRNAs and induce either translation repression or mRNA cleavage. Recently, it has been reported that miRNAs could possibly play an important role in human diseases. By integrating miRNA target genes, cancer genes, miRNA and mRNA expression profiles information, a database is developed to link miRNAs to cancer target genes. The database provides experimentally verified human miRNA target genes information, including oncogenes and tumor suppressor genes. In addition, fragile sites information for miRNAs, and the strength of the correlation of miRNA and its target mRNA expression level for nine tissue types are computed, which serve as an indicator for suggesting miRNAs could play a role in human cancer. The database is freely accessible at http://ppi.bioinfo.asia.edu.tw/mirna_target/index.html.