Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Construction of Large Scale UAVs Using Homebuilt Composite Techniques

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Investigating the Effectiveness of a 3D Printed Composite Mold

In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.

Experimental Characterization of the Thermal Behavior of a Sawdust Mortar

Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.

Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics

In the last decade, a new industrial revolution seems to be emerging, supported -once again- by the rapid advancements of Information Technology in the areas of Machine-to-Machine (M2M) communication permitting large numbers of intelligent devices, e.g. sensors to communicate with each other and take decisions without any or minimum indirect human intervention. The advent of these technologies have triggered the emergence of a new category of hybrid (cyber-physical) manufacturing systems, combining advanced manufacturing techniques with innovative M2M applications based on the Internet of Things (IoT), under the umbrella term Industry 4.0. Even though the topic of Industry 4.0 has attracted much attention during the last few years, the attempts of providing a systematic literature review of the subject are scarce. In this paper, we present the authors’ initial study of the field with a special focus on the use and applications of Industry 4.0 principles in material handling automations and in-house logistics. Research shows that despite the vivid discussion and attractiveness of the subject, there are still many challenges and issues that have to be addressed before Industry 4.0 becomes standardized and widely applicable.

Investigating the Effect of VR, Time Study and Ergonomics on the Design of Industrial Workstations

This paper presents the review of the studies on the ergonomics, virtual reality, and work measurement (time study) at the industrial workstations because each of these three individual techniques can be used to improve the design of workstations and task position. The objective of this paper is to give an overall literature review that if there is any relation between these three different techniques. Therefore, it is so important to review the scientific studies to find a better and effective way for improving design of workstations. On the other hand, manufacturers found that instead of using one of the approaches, utilizing the combination of these individual techniques are more effective to reduce the cost and production time.

Monomial Form Approach to Rectangular Surface Modeling

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Critical Psychosocial Risk Treatment for Engineers and Technicians

This study explores how management addresses psychosocial risks in seven teams of engineers and technicians in the midst of the fourth industrial revolution. The sample is from an ongoing quasi-experiment about psychosocial risk management in a manufacturing company in Sweden. Each of the seven teams belongs to one of two clusters: a positive cluster or a negative cluster. The positive cluster reports a significantly positive change in psychosocial risk levels between two time-points and the negative cluster reports a significantly negative change. The data are collected using semi-structured interviews. The results of the computer aided thematic analysis show that there are more differences than similarities when comparing the risk treatment actions taken between the two clusters. Findings show that the managers in the positive cluster use more enabling actions that foster and support formal and informal relationship building. In contrast, managers that use less enabling actions hinder the development of positive group processes and contribute negative changes in psychosocial risk levels. This exploratory study sheds some light on how management can influence significant positive and negative changes in psychosocial risk levels during a risk management process.

Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

The Role of Organizational Culture in Facilitating Employee Job Satisfaction in Emerald Group

The importance of having a good organizational culture that supports employee job satisfaction has fascinated both the business and academic world because of a tantalizing promise: culture can be fundamental to the enhancement of financial performance. This promise has led to growing interest for both researchers and practitioners in attempting to understand the influence of organizational culture on employees’ satisfaction and organizational performance. Even though the relationship between organizational culture and employee job satisfaction have gained attention in the literature, the majority of studies have been conducted within manufacturing organizations and tend to oversee the impact of culture on employee job satisfaction in a service-based environment. Thus, the main driving force of this study was to explore the role of organizational culture types in facilitating employee job satisfaction at Emerald Publishing Group. Interviews qualitative data analysis indicated that Emerald’s culture dominated by adhocracy and clan culture values. In addition, the findings provided evidence, which demonstrated that group and adhocracy organizational culture types play key roles in facilitating employee job satisfaction in a service-based environment.

Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Investigating what Effects Aviation Fluids Have on the Flatwise Compressive Strength of Nomex® Honeycomb Core Material

One of the disadvantages of honeycomb sandwich structure is that they are prone to fluid intrusion. The purpose of this study is to determine if the structural properties of honeycomb core are affected by contact with a fluid. The test specimens were manufactured of fiberglass prepreg for the facesheets and Nomex® honeycomb core for the core material in accordance with ASTM C-365/365M. Test specimens were soaked in several different kinds of fluids, such as aircraft fuel, turbine engine oil, hydraulic fluid, and water for a period of 60 days. A flatwise compressive test was performed, and the test results were analyzed to determine how the contact with aircraft fluids affected the compressive strength of the Nomex® honeycomb core and how the strength was recovered when the specimens were dry. In addition, the investigation of de-bonding between facesheet and core material after soaking were performed to support the study.

Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand

In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.

Stress Analysis of Hexagonal Element for Precast Concrete Pavements

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Recovery of Post-Consumer PET Bottles in a Composite Material Preparation

Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.

Physicochemical Characterization of Medium Alkyd Resins Prepared with a Mixture of Linum usitatissimum L. and Plukenetia volubilis L. Oils

Alkyds have become essential raw materials in the coating and paint industry, due to their low cost, good application properties and lower environmental impact in comparison with petroleum-based polymers. The properties of these oil-modified materials depend on the type of polyunsaturated vegetable oil used for its manufacturing, since a higher degree of unsaturation provides a better crosslinking of the cured paint. Linum usitatissimum L. (flax) oil is widely used to develop alkyd resins due to its high degree of unsaturation. Although it is intended to find non-traditional sources and increase their commercial value, to authors’ best knowledge a natural source that can replace flaxseed oil has not yet been found. However, Plukenetia volubilis L. oil, of Peruvian origin, contains a similar fatty acid polyunsaturated content to the one reported for Linum usitatissimum L. oil. In this perspective, medium alkyd resins were prepared with a mixture of 50% of Linum usitatissimum L. oil and 50% of Plukenetia volubilis L. oil. Pure Linum usitatissimum L. oil was also used for comparison purposes. Three different resins were obtained by varying the amount of glycerol and pentaerythritol. The synthesized alkyd resins were characterized by FT-IR, and physicochemical properties like acid value, colour, viscosity, density and drying time were evaluated by standard methods. The pencil hardness and chemical resistance behaviour of the cured resins were also studied. Overall, it can be concluded that medium alkyd resins containing Plukenetia volubilis L. oil have an equivalent behaviour compared to those prepared purely with Linum usitatissimum L. oil. Both Plukenetia volubilis L. oil and pentaerythritol have a remarkable influence on certain physicochemical properties of medium alkyd resins.

A 1H NMR-Linked PCR Modelling Strategy for Tracking the Fatty Acid Sources of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Simulated Shallow-Frying Episodes

Objectives/Hypotheses: The adverse health effect potential of dietary lipid oxidation products (LOPs) has evoked much clinical interest. Therefore, we employed a 1H NMR-linked Principal Component Regression (PCR) chemometrics modelling strategy to explore relationships between data matrices comprising (1) aldehydic LOP concentrations generated in culinary oils/fats when exposed to laboratory-simulated shallow frying practices, and (2) the prior saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents of such frying media (FM), together with their heating time-points at a standard frying temperature (180 oC). Methods: Corn, sunflower, extra virgin olive, rapeseed, linseed, canola, coconut and MUFA-rich algae frying oils, together with butter and lard, were heated according to laboratory-simulated shallow-frying episodes at 180 oC, and FM samples were collected at time-points of 0, 5, 10, 20, 30, 60, and 90 min. (n = 6 replicates per sample). Aldehydes were determined by 1H NMR analysis (Bruker AV 400 MHz spectrometer). The first (dependent output variable) PCR data matrix comprised aldehyde concentration scores vectors (PC1* and PC2*), whilst the second (predictor) one incorporated those from the fatty acid content/heating time variables (PC1-PC4) and their first-order interactions. Results: Structurally complex trans,trans- and cis,trans-alka-2,4-dienals, 4,5-epxy-trans-2-alkenals and 4-hydroxy-/4-hydroperoxy-trans-2-alkenals (group I aldehydes predominantly arising from PUFA peroxidation) strongly and positively loaded on PC1*, whereas n-alkanals and trans-2-alkenals (group II aldehydes derived from both MUFA and PUFA hydroperoxides) strongly and positively loaded on PC2*. PCR analysis of these scores vectors (SVs) demonstrated that PCs 1 (positively-loaded linoleoylglycerols and [linoleoylglycerol]:[SFA] content ratio), 2 (positively-loaded oleoylglycerols and negatively-loaded SFAs), 3 (positively-loaded linolenoylglycerols and [PUFA]:[SFA] content ratios), and 4 (exclusively orthogonal sampling time-points) all powerfully contributed to aldehydic PC1* SVs (p 10-3 to < 10-9), as did all PC1-3 x PC4 interaction ones (p 10-5 to < 10-9). PC2* was also markedly dependent on all the above PC SVs (PC2 > PC1 and PC3), and the interactions of PC1 and PC2 with PC4 (p < 10-9 in each case), but not the PC3 x PC4 contribution. Conclusions: NMR-linked PCR analysis is a valuable strategy for (1) modelling the generation of aldehydic LOPs in heated cooking oils and other FM, and (2) tracking their unsaturated fatty acid (UFA) triacylglycerol sources therein.

Achieving Environmentally Sustainable Supply Chain in Textile and Apparel Industries

Most of the manufacturing entities cause negative footprint to nature that demand due attention. Textile industries have one of the longest supply chains and bear the liability of significant environmental impact to our planet. Issues of environmental safety, scarcity of energy and resources, and demand for eco-friendly products have driven research to search for safe and suitable alternatives in apparel processing. Consumer awareness, increased pressure from fashion brands and actions from local legislative authorities have somewhat been able to improve the practices. Objective of this paper is to reveal the best selection of raw materials and methods of production, taking environmental sustainability into account. Methodology used in this study is exploratory in nature based on personal experience, field visits in the factories of Bangladesh and secondary sources. Findings are limited to exploring better alternatives to conventional operations of a Readymade Garment manufacturing, from fibre selection to final product delivery, therefore showing some ways of achieving greener environment in the supply chain of a clothing industry.

Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine

In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.