Site Selection of Traffic Camera based on Dempster-Shafer and Bagging Theory

Traffic incident has bad effect on all parts of society so controlling road networks with enough traffic devices could help to decrease number of accidents, so using the best method for optimum site selection of these devices could help to implement good monitoring system. This paper has considered here important criteria for optimum site selection of traffic camera based on aggregation methods such as Bagging and Dempster-Shafer concepts. In the first step, important criteria such as annual traffic flow, distance from critical places such as parks that need more traffic controlling were identified for selection of important road links for traffic camera installation, Then classification methods such as Artificial neural network and Decision tree algorithms were employed for classification of road links based on their importance for camera installation. Then for improving the result of classifiers aggregation methods such as Bagging and Dempster-Shafer theories were used.

Traffic Flow on Road Junctions

The paper deals with a mathematical model for fluid dynamic flows on road networks which is based on conservation laws. This nonlinear framework is based on the conservation of cars. We focus on traffic circle, which is a finite number of roads that meet at some junctions. The traffic circle with junctions having either one incoming and two outgoing or two incoming and one outgoing roads. We describe the numerical schemes with the particular boundary conditions used to produce approximated solutions of the problem.

Development of Accident Predictive Model for Rural Roadway

This paper present the study carried out of accident analysis, black spot study and to develop accident predictive models based on the data collected at rural roadway, Federal Route 50 (F050) Malaysia. The road accident trends and black spot ranking were established on the F050. The development of the accident prediction model will concentrate in Parit Raja area from KM 19 to KM 23. Multiple non-linear regression method was used to relate the discrete accident data with the road and traffic flow explanatory variable. The dependent variable was modeled as the number of crashes namely accident point weighting, however accident point weighting have rarely been account in the road accident prediction Models. The result show that, the existing number of major access points, without traffic light, rise in speed, increasing number of Annual Average Daily Traffic (AADT), growing number of motorcycle and motorcar and reducing the time gap are the potential contributors of increment accident rates on multiple rural roadway.

Evaluation of University Technology Malaysia on Campus Transport Access Management

Access Management is the proactive management of vehicular access points to land parcels adjacent to all manner of roadways. Good access management promotes safe and efficient use of the transportation network. This study attempts to utilize archived data from the University Technology of Malaysia on-campus area to assess the accuracy with which access management display some benefits. Results show that usage of access management reduces delay and fewer crashes. Clustered development can improve walking, cycling and transit travel, reduce parking requirements and improve emergency responses. Effective Access Management planning can also reduce total roadway facility costs by reducing the number of driveways and intersections. At the end after presenting recommendations some of the travel impact, and benefits that can be derived if these suggestions are implemented have been summarized with the related comments.

Extent of Highway Capacity Loss Due to Rainfall

Traffic flow in adverse weather conditions have been investigated in this study for general traffic, week day and week end traffic. The empirical evidence is strong in support of the view that rainfall affects macroscopic traffic flow parameters. Data generated from a basic highway section along J5 in Johor Bahru, Malaysia was synchronized with 161 rain events over a period of three months. This revealed a 4.90%, 6.60% and 11.32% reduction in speed for light rain, moderate rain and heavy rain conditions respectively. The corresponding capacity reductions in the three rainfall regimes are 1.08% for light rain, 6.27% for moderate rain and 29.25% for heavy rain. In the week day traffic, speed drops of 8.1% and 16.05% were observed for light and heavy conditions. The moderate rain condition speed increased by 12.6%. The capacity drops for week day traffic are 4.40% for light rain, 9.77% for moderate rain and 45.90% for heavy rain. The weekend traffic indicated speed difference between the dry condition and the three rainy conditions as 6.70% for light rain, 8.90% for moderate rain and 13.10% for heavy rain. The capacity changes computed for the weekend traffic were 0.20% in light rain, 13.90% in moderate rain and 16.70% in heavy rain. No traffic instabilities were observed throughout the observation period and the capacities reported for each rain condition were below the norain condition capacity. Rainfall has tremendous impact on traffic flow and this may have implications for shock wave propagation.

Towards Modeling for Crashes A Low-Cost Adaptive Methodology for Karachi

The aim of this paper is to discuss a low-cost methodology that can predict traffic flow conflicts and quantitatively rank crash expectancies (based on relative probability) for various traffic facilities. This paper focuses on the application of statistical distributions to model traffic flow and Monte Carlo techniques to simulate traffic and discusses how to create a tool in order to predict the possibility of a traffic crash. A low-cost data collection methodology has been discussed for the heterogeneous traffic flow that exists and a GIS platform has been proposed to thematically represent traffic flow from simulations and the probability of a crash. Furthermore, discussions have been made to reflect the dynamism of the model in reference to its adaptability, adequacy, economy, and efficiency to ensure adoption.

Measuring Heterogeneous Traffic Density

Traffic Density provides an indication of the level of service being provided to the road users. Hence, there is a need to study the traffic flow characteristics with specific reference to density in detail. When the length and speed of the vehicles in a traffic stream vary significantly, the concept of occupancy, rather than density, is more appropriate to describe traffic concentration. When the concept of occupancy is applied to heterogeneous traffic condition, it is necessary to consider the area of the road space and the area of the vehicles as the bases. Hence, a new concept named, 'area-occupancy' is proposed here. It has been found that the estimated area-occupancy gives consistent values irrespective of change in traffic composition.

Restricted Pedestrian Flow Performance Measures during Egress from a Complex Facility

In this paper, we use an M/G/C/C state dependent queuing model within a complex network topology to determine the different performance measures for pedestrian traffic flow. The occupants in this network topology need to go through some source corridors, from which they can choose their suitable exiting corridors. The performance measures were calculated using arrival rates that maximize the throughputs of source corridors. In order to increase the throughput of the network, the result indicates that the flow direction of pedestrian through the corridors has to be restricted and the arrival rates to the source corridor need to be controlled.

Enhanced QoS Mechanisms for IEEE 802.11e Wireless Networks

The quality-of-service (QoS) support for wireless LANs has been a hot research topic during the past few years. In this paper, two QoS provisioning mechanisms are proposed for the employment in 802.11e EDCA MAC scheme. First, the proposed call admission control mechanism can not only guarantee the QoS for the higher priority existing connections but also provide the minimum reserved bandwidth for traffic flows with lower priority. In addition, the adaptive contention window adjustment mechanism can adjust the maximum and minimum contention window size dynamically according to the existing connection number of each AC. The collision probability as well as the packet delay will thus be reduced effectively. Performance results via simulations have revealed the enhanced QoS property achieved by employing these two mechanisms.

Bi-Criteria Latency Optimization of Intra-and Inter-Autonomous System Traffic Engineering

Traffic Engineering (TE) is the process of controlling how traffic flows through a network in order to facilitate efficient and reliable network operations while simultaneously optimizing network resource utilization and traffic performance. TE improves the management of data traffic within a network and provides the better utilization of network resources. Many research works considers intra and inter Traffic Engineering separately. But in reality one influences the other. Hence the effective network performances of both inter and intra Autonomous Systems (AS) are not optimized properly. To achieve a better Joint Optimization of both Intra and Inter AS TE, we propose a joint Optimization technique by considering intra-AS features during inter – AS TE and vice versa. This work considers the important criterion say latency within an AS and between ASes. and proposes a Bi-Criteria Latency optimization model. Hence an overall network performance can be improved by considering this jointoptimization technique in terms of Latency.

Optimization of Fuel Consumption of a Bus used in City Line with Regulation of Driving Characteristics

The fuel cost of the motor vehicle operating on its common route is an important part of the operating cost. Therefore, the importance of the fuel saving is increasing day by day. One of the parameters which improve fuel saving is the regulation of driving characteristics. The number and duration of stop is increased by the heavy traffic load. It is possible to improve the fuel saving with regulation of traffic flow and driving characteristics. The researches show that the regulation of the traffic flow decreases fuel consumption, but it is not enough to improve fuel saving without the regulation of driving characteristics. This study analyses the fuel consumption of two trips of city bus operating on its common route and determines the effect of traffic density and driving characteristics on fuel consumption. Finally it offers some suggestions about regulation of driving characteristics to improve the fuel saving. Fuel saving is determined according to the results obtained from simulation program. When experimental and simulation results are compared, it has been found that the fuel saving was reached up the to 40 percent ratios.

Trace Emergence of Ants- Traffic Flow, based upon Exclusion Process

Biological evolution has generated a rich variety of successful solutions; from nature, optimized strategies can be inspired. One interesting example is the ant colonies, which are able to exhibit a collective intelligence, still that their dynamic is simple. The emergence of different patterns depends on the pheromone trail, leaved by the foragers. It serves as positive feedback mechanism for sharing information. In this paper, we use the dynamic of TASEP as a model of interaction at a low level of the collective environment in the ant-s traffic flow. This work consists of modifying the movement rules of particles “ants" belonging to the TASEP model, so that it adopts with the natural movement of ants. Therefore, as to respect the constraints of having no more than one particle per a given site, and in order to avoid collision within a bidirectional circulation, we suggested two strategies: decease strategy and waiting strategy. As a third work stage, this is devoted to the study of these two proposed strategies- stability. As a final work stage, we applied the first strategy to the whole environment, in order to get to the emergence of traffic flow, which is a way of learning.

Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Modeling and Analysis of Adaptive Buffer Sharing Scheme for Consecutive Packet Loss Reduction in Broadband Networks

High speed networks provide realtime variable bit rate service with diversified traffic flow characteristics and quality requirements. The variable bit rate traffic has stringent delay and packet loss requirements. The burstiness of the correlated traffic makes dynamic buffer management highly desirable to satisfy the Quality of Service (QoS) requirements. This paper presents an algorithm for optimization of adaptive buffer allocation scheme for traffic based on loss of consecutive packets in data-stream and buffer occupancy level. Buffer is designed to allow the input traffic to be partitioned into different priority classes and based on the input traffic behavior it controls the threshold dynamically. This algorithm allows input packets to enter into buffer if its occupancy level is less than the threshold value for priority of that packet. The threshold is dynamically varied in runtime based on packet loss behavior. The simulation is run for two priority classes of the input traffic – realtime and non-realtime classes. The simulation results show that Adaptive Partial Buffer Sharing (ADPBS) has better performance than Static Partial Buffer Sharing (SPBS) and First In First Out (FIFO) queue under the same traffic conditions.

Pragati Node Popularity (PNP) Approach to Identify Congestion Hot Spots in MPLS

In large Internet backbones, Service Providers typically have to explicitly manage the traffic flows in order to optimize the use of network resources. This process is often referred to as Traffic Engineering (TE). Common objectives of traffic engineering include balance traffic distribution across the network and avoiding congestion hot spots. Raj P H and SVK Raja designed the Bayesian network approach to identify congestion hors pots in MPLS. In this approach for every node in the network the Conditional Probability Distribution (CPD) is specified. Based on the CPD the congestion hot spots are identified. Then the traffic can be distributed so that no link in the network is either over utilized or under utilized. Although the Bayesian network approach has been implemented in operational networks, it has a number of well known scaling issues. This paper proposes a new approach, which we call the Pragati (means Progress) Node Popularity (PNP) approach to identify the congestion hot spots with the network topology alone. In the new Pragati Node Popularity approach, IP routing runs natively over the physical topology rather than depending on the CPD of each node as in Bayesian network. We first illustrate our approach with a simple network, then present a formal analysis of the Pragati Node Popularity approach. Our PNP approach shows that for any given network of Bayesian approach, it exactly identifies the same result with minimum efforts. We further extend the result to a more generic one: for any network topology and even though the network is loopy. A theoretical insight of our result is that the optimal routing is always shortest path routing with respect to some considerations of hot spots in the networks.

MATLAB-based System for Centralized Monitoring and Self Restoration against Fiber Fault in FTTH

This paper presented a MATLAB-based system named Smart Access Network Testing, Analyzing and Database (SANTAD), purposely for in-service transmission surveillance and self restoration against fiber fault in fiber-to-the-home (FTTH) access network. The developed program will be installed with optical line terminal (OLT) at central office (CO) to monitor the status and detect any fiber fault that occurs in FTTH downwardly from CO towards residential customer locations. SANTAD is interfaced with optical time domain reflectometer (OTDR) to accumulate every network testing result to be displayed on a single computer screen for further analysis. This program will identify and present the parameters of each optical fiber line such as the line's status either in working or nonworking condition, magnitude of decreasing at each point, failure location, and other details as shown in the OTDR's screen. The failure status will be delivered to field engineers for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Optimal Route Policy in Air Traffic Control with Competing Airlines

This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.

Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle

A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.

Equivalent Transformation for Heterogeneous Traffic Cellular Automata

Understanding driving behavior is a complicated researching topic. To describe accurate speed, flow and density of a multiclass users traffic flow, an adequate model is needed. In this study, we propose the concept of standard passenger car equivalent (SPCE) instead of passenger car equivalent (PCE) to estimate the influence of heavy vehicles and slow cars. Traffic cellular automata model is employed to calibrate and validate the results. According to the simulated results, the SPCE transformations present good accuracy.

A Scenario-Based Approach for the Air Traffic Flow Management Problem with Stochastic Capacities

In this paper, we investigate the strategic stochastic air traffic flow management problem which seeks to balance airspace capacity and demand under weather disruptions. The goal is to reduce the need for myopic tactical decisions that do not account for probabilistic knowledge about the NAS near-future states. We present and discuss a scenario-based modeling approach based on a time-space stochastic process to depict weather disruption occurrences in the NAS. A solution framework is also proposed along with a distributed implementation aimed at overcoming scalability problems. Issues related to this implementation are also discussed.