Quality Control of Automotive Gearbox Based On Vibration Signal Analysis

In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.

Unreliable Production Lines with Simultaneously Unbalanced Operation Time Means, Breakdown, and Repair Rates

This paper investigates the benefits of deliberately unbalancing both operation time means (MTs) and unreliability (failure and repair rates) for non-automated production lines. The lines were simulated with various line lengths, buffer capacities, degrees of imbalance and patterns of MT and unreliability imbalance. Data on two performance measures, namely throughput (TR) and average buffer level (ABL) were gathered, analyzed and compared to a balanced line counterpart. A number of conclusions were made with respect to the ranking of configurations, as well as to the relationships among the independent design parameters and the dependent variables. It was found that the best configurations are a balanced line arrangement and a monotone decreasing MT order, coupled with either a decreasing or a bowl unreliability configuration, with the first generally resulting in a reduced TR and the second leading to a lower ABL than those of a balanced line.

The Application of Queuing Theory in Multi-Stage Production Lines

The purpose of this work is examining the multiproduct multi-stage in a battery production line. To improve the performances of an assembly production line by determine the efficiency of each workstation. Data collected from every workstation. The data are throughput rate, number of operator, and number of parts that arrive and leaves during part processing. Data for the number of parts that arrives and leaves are collected at least at the amount of ten samples to make the data is possible to be analyzed by Chi-Squared Goodness Test and queuing theory. Measures of this model served as the comparison with the standard data available in the company. Validation of the task time value resulted by comparing it with the task time value based on the company database. Some performance factors for the multi-product multi-stage in a battery production line in this work are shown. The efficiency in each workstation was also shown. Total production time to produce each part can be determined by adding the total task time in each workstation. To reduce the queuing time and increase the efficiency based on the analysis any probably improvement should be done. One probably action is by increasing the number of operators how manually operate this workstation.

A Lean Manufacturing Profile of Practices in the Metallurgical Industry: A Methodology for Multivariate Analysis

The purpose of this project is to carry out an analysis and determine the profile of actual lean manufacturing processes in the Metropolitan Area of Bucaramanga. Through the analysis of qualitative and quantitative variables it was possible to establish how these manufacturers develop production practices that ensure their competitiveness and productivity in the market. In this study, a random sample of metallurgic and wrought iron companies was applied, following which a quantitative focus and analysis was used to formulate a qualitative methodology for measuring the level of lean manufacturing procedures in the industry. A qualitative evaluation was also carried out through a multivariate analysis using the Numerical Taxonomy System (NTSYS) program which should allow for the determination of Lean Manufacturing profiles. Through the results it was possible to observe how the companies in the sector are doing with respect to Lean Manufacturing Practices, as well as identify the level of management that these companies practice with respect to this topic. In addition, it was possible to ascertain that there is no one dominant profile in the sector when it comes to Lean Manufacturing. It was established that the companies in the metallurgic and wrought iron industry show low levels of Lean Manufacturing implementation. Each one carries out diverse actions that are insufficient to consolidate a sectoral strategy for developing a competitive advantage which enables them to tie together a production strategy.

Investigation on Machine Tools Energy Consumptions

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Efficient Compact Micro DBD Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Ozone is well known as a powerful, fast reacting oxidant. Ozone based processes produce no by-product residual as non-reacted ozone decomposes to molecular oxygen. Therefore an application of ozone is widely accepted as one of the main approaches for a Sustainable and Clean Technologies development. There are number of technologies which require ozone to be delivered to specific points of a production network or reactors construction. Due to space constraints, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28*10-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for both submerged and dry systems. With a robust compact design MROG can be used as an integrated module for production lines of high complexity.

Diagnosis of Static, Dynamic and Mixed Eccentricity in Line Start Permanent Magnet Synchronous Motor by Using FEM

In Line start permanent magnet synchronous motor,  eccentricity is a common fault that can make it necessary to remove  the motor from the production line. However, because the motor may  be inaccessible, diagnosing the fault is not easy. This paper presents  an FEM that identifies different models, static eccentricity, dynamic  eccentricity, and mixed eccentricity, at no load and full load. The  method overcomes the difficulty of applying FEMs to transient  behavior. It simulates motor speed, torque and flux density  distribution along the air gap for SE,DE, and ME. This paper  represents the various effects of different eccentricitiestypes on the  transient performance.

On the Computation of a Common n-finger Robotic Grasp for a Set of Objects

Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.

The Evaluation of Production Line Performance by Using ARENA – A Case Study

The purpose of this paper is to simulate the production process of a metal stamping industry and to evaluate the utilization of the production line by using ARENA simulation software. The process time and the standard time for each process of the production line is obtained from data given by the company management. Other data are collected through direct observation of the line. There are three work stations performing ten different types of processes in order to produce a single product type. Arena simulation model is then developed based on the collected data. Verification and validation are done to the Arena model, and finally the result of Arena simulation can be analyzed. It is found that utilization at each workstation will increase if batch size is increased although throughput rate remains/is kept constant. This study is very useful for the company because the company needs to improve the efficiency and utilization of its production lines.

Optimization of Structure of Section-Based Automated Lines

Automated production lines with so called 'hard structures' are widely used in manufacturing. Designers segmented these lines into sections by placing a buffer between the series of machine tools to increase productivity. In real production condition the capacity of a buffer system is limited and real production line can compensate only some part of the productivity losses of an automated line. The productivity of such production lines cannot be readily determined. This paper presents mathematical approach to solving the structure of section-based automated production lines by criterion of maximum productivity.

Modeling and Simulation of a Serial Production Line with Constant Work-In-Process

This paper presents a model for an unreliable production line, which is operated according to demand with constant work-in-process (CONWIP). A simulation model is developed based on the discrete model and several case problems are analyzed using the model. The model is utilized to optimize storage space capacities at intermediate stages and the number of kanbans at the last stage, which is used to trigger the production at the first stage. Furthermore, effects of several line parameters on production rate are analyzed using design of experiments.

Performance Comparison of Two Assembly Line Concepts: Conveyor Line and Box Assembly Line

As there has been a recognizable transition in automotive industry from mass production to mass customization, automobile manufacturers and their suppliers have been seeking ways for more flexible and efficient processes. Eventually, modular production is currently being applied to manage the changing orders of the industry. In this paper, two different modular assembly line concepts were studied: conveyor line and box assembly line. Mathematical model for two assembly line concepts were developed and their production line efficiency were compared as a performance measure to improve their assembly line balancing.

Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm

In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.

Machine Learning in Production Systems Design Using Genetic Algorithms

To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.

Fast 2.5D Model Reconstruction of Assembled Parts with High Occlusion for Completeness Inspection

In this work a dual laser triangulation system is presented for fast building of 2.5D textured models of objects within a production line. This scanner is designed to produce data suitable for 3D completeness inspection algorithms. For this purpose two laser projectors have been used in order to considerably reduce the problem of occlusions in the camera movement direction. Results of reconstruction of electronic boards are presented, together with a comparison with a commercial system.

Integrating the Theory of Constraints and Six Sigma in Manufacturing Process Improvement

Six Sigma is a well known discipline that reduces variation using complex statistical tools and the DMAIC model. By integrating Goldratts-s Theory of Constraints, the Five Focusing Points and System Thinking tools, Six Sigma projects can be selected where it can cause more impact in the company. This research defines an integrated model of six sigma and constraint management that shows a step-by-step guide using the original methodologies from each discipline and is evaluated in a case study from the production line of a Automobile engine monoblock V8, resulting in an increase in the line capacity from 18.7 pieces per hour to 22.4 pieces per hour, a reduction of 60% of Work-In-Process and a variation decrease of 0.73%.

Mixed Model Assembly Line Sequencing In Make to Order System with Available to Promise Consideration

Mixed model assembly lines (MMAL) are a type of production line where a variety of product models similar in product characteristics are assembled. The effective design of these lines requires that schedule for assembling the different products is determined. In this paper we tried to fit the sequencing problem with the main characteristics of make to order (MTO) environment. The problem solved in this paper is a multiple objective sequencing problem in mixed model assembly lines sequencing using weighted Sum Method (WSM) using GAMS software for small problem and an effective GA for large scale problems because of the nature of NP-hardness of our problem and vast time consume to find the optimum solution in large problems. In this problem three practically important objectives are minimizing: total utility work, keeping a constant production rate variation, and minimizing earliness and tardiness cost which consider the priority of each customer and different due date which is a real situation in mixed model assembly lines and it is the first time we consider different attribute to prioritize the customers which help the company to reduce the cost of earliness and tardiness. This mechanism is a way to apply an advance available to promise (ATP) in mixed model assembly line sequencing which is the main contribution of this paper.

Using the Monte Carlo Simulation to Predict the Assembly Yield

Electronics Products that achieve high levels of integrated communications, computing and entertainment, multimedia features in small, stylish and robust new form factors are winning in the market place. Due to the high costs that an industry may undergo and how a high yield is directly proportional to high profits, IC (Integrated Circuit) manufacturers struggle to maximize yield, but today-s customers demand miniaturization, low costs, high performance and excellent reliability making the yield maximization a never ending research of an enhanced assembly process. With factors such as minimum tolerances, tighter parameter variations a systematic approach is needed in order to predict the assembly process. In order to evaluate the quality of upcoming circuits, yield models are used which not only predict manufacturing costs but also provide vital information in order to ease the process of correction when the yields fall below expectations. For an IC manufacturer to obtain higher assembly yields all factors such as boards, placement, components, the material from which the components are made of and processes must be taken into consideration. Effective placement yield depends heavily on machine accuracy and the vision of the system which needs the ability to recognize the features on the board and component to place the device accurately on the pads and bumps of the PCB. There are currently two methods for accurate positioning, using the edge of the package and using solder ball locations also called footprints. The only assumption that a yield model makes is that all boards and devices are completely functional. This paper will focus on the Monte Carlo method which consists in a class of computational algorithms (information processed algorithms) which depends on repeated random samplings in order to compute the results. This method utilized in order to recreate the simulation of placement and assembly processes within a production line.

Solving a New Mixed-Model Assembly LineSequencing Problem in a MTO Environment

In the last decades to supply the various and different demands of clients, a lot of manufacturers trend to use the mixedmodel assembly line (MMAL) in their production lines, since this policy make possible to assemble various and different models of the equivalent goods on the same line with the MTO approach. In this article, we determine the sequence of (MMAL) line, with applying the kitting approach and planning of rest time for general workers to reduce the wastages, increase the workers effectiveness and apply the sector of lean production approach. This Multi-objective sequencing problem solved in small size with GAMS22.2 and PSO meta heuristic in 10 test problems and compare their results together and conclude that their results are very similar together, next we determine the important factors in computing the cost, which improving them cost reduced. Since this problem, is NPhard in large size, we use the particle swarm optimization (PSO) meta-heuristic for solving it. In large size we define some test problems to survey it-s performance and determine the important factors in calculating the cost, that by change or improved them production in minimum cost will be possible.

A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line

Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.