Professional Management on Ecotourism and Conservation to Ensure the Future of Komodo National Park

Komodo National Park can be associated with the implementation of ecotourism program. The result of Principal Components Analysis is synthesized, tested, and compared to the basic concept of ecotourism with some field adjustments. Principal aspects of professional management should involve ecotourism and wildlife welfare. The awareness should be focused on the future of the Natural Park as 7th Wonder Natural Heritage and its wildlife components, free from human wastes and beneficial to wildlife and local people. According to perceptions and expectations of visitors from various results of tourism programs, the visitor’s perceptions showed that the tourism management in Komodo National Park should pay more attention to visitor's satisfaction and expectation and gives positive impact directly to the ecosystem sustainability, local community and transparency to the conservation program.

Comparison of Real-Time PCR and FTIR with Chemometrics Technique in Analysing Halal Supplement Capsules

Halal authentication and verification in supplement capsules are highly required as the gelatine available in the market can be from halal or non-halal sources. It is an obligation for Muslim to consume and use the halal consumer goods. At present, real-time polymerase chain reaction (RT-PCR) is the most common technique being used for the detection of porcine and bovine DNA in gelatine due to high sensitivity of the technique and higher stability of DNA compared to protein. In this study, twenty samples of supplements capsules from different products with different Halal logos were analyzed for porcine and bovine DNA using RT-PCR. Standard bovine and porcine gelatine from eurofins at a range of concentration from 10-1 to 10-5 ng/µl were used to determine the linearity range, limit of detection and specificity on RT-PCR (SYBR Green method). RT-PCR detected porcine (two samples), bovine (four samples) and mixture of porcine and bovine (six samples). The samples were also tested using FT-IR technique where normalized peak of IR spectra were pre-processed using Savitsky Golay method before Principal Components Analysis (PCA) was performed on the database. Scores plot of PCA shows three clusters of samples; bovine, porcine and mixture (bovine and porcine). The RT-PCR and FT-IR with chemometrics technique were found to give same results for porcine gelatine samples which can be used for Halal authentication.

Development and Validation of the Response to Stressful Situations Scale in the General Population

The aim of the current study was to develop and validate a Response to Stressful Situations Scale (RSSS) for the Portuguese population. This scale assesses the degree of stress experienced in scenarios that can constitute positive, negative and more neutral stressors, and also describes the physiological, emotional and behavioral reactions to those events according to their intensity. These scenarios include typical stressor scenarios relevant to patients with schizophrenia, which are currently absent from most scales, assessing specific risks that these stressors may bring on subjects, which may prove useful in non-clinical and clinical populations (i.e. Patients with mood or anxiety disorders, schizophrenia). Results from Principal Components Analysis and Confirmatory Factor Analysis of two adult samples from general population allowed to confirm a three-factor model with good fit indices: χ2 (144)= 370.211, p = 0.000; GFI = 0.928; CFI = 0.927; TLI = 0.914, RMSEA = 0.055, P(rmsea ≤0.005) = .096; PCFI = .781. Further data analysis of the scale revealed that RSSS is an adequate assessment tool of stress response in adults to be used in further research and clinical settings, with good psychometric characteristics, adequate divergent and convergent validity, good temporal stability and high internal consistency.

Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data

The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.

Model Discovery and Validation for the Qsar Problem using Association Rule Mining

There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.

Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition

Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.

Input Textural Feature Selection By Mutual Information For Multispectral Image Classification

Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Land Use around Metro Stations: A Case Study

Transport and land use are two systems that are mutually influenced. Their interaction is a complex process associated with continuous feedback. The paper examines the existing land use around an under construction metro station of the new metro network of Thessaloniki, Greece, through the use of field investigations, around the station-s predefined location. Moreover, except from the analytical land use recording, a sampling questionnaire survey is addressed to several selected enterprises of the study area. The survey aims to specify the characteristics of the enterprises, the trip patterns of their employees and clients, as well as the stated preferences towards the changes the new metro station is considered to bring to the area. The interpretation of the interrelationships among selected data from the questionnaire survey takes place using the method of Principal Components Analysis for Categorical Data. The followed methodology and the survey-s results contribute to the enrichment of the relevant bibliography concerning the way the creation of a new metro station can have an impact on the land use pattern of an area, by examining the situation before the operation of the station.

Automated Algorithm for Removing Continuous Flame Spectrum Based On Sampled Linear Bases

In this paper, an automated algorithm to estimate and remove the continuous baseline from measured spectra containing both continuous and discontinuous bands is proposed. The algorithm uses previous information contained in a Continuous Database Spectra (CDBS) to obtain a linear basis, with minimum number of sampled vectors, capable of representing a continuous baseline. The proposed algorithm was tested by using a CDBS of flame spectra where Principal Components Analysis and Non-negative Matrix Factorization were used to obtain linear bases. Thus, the radical emissions of natural gas, oil and bio-oil flames spectra at different combustion conditions were obtained. In order to validate the performance in the baseline estimation process, the Goodness-of-fit Coefficient and the Root Mean-squared Error quality metrics were evaluated between the estimated and the real spectra in absence of discontinuous emission. The achieved results make the proposed method a key element in the development of automatic monitoring processes strategies involving discontinuous spectral bands.

Classification of Defects by the SVM Method and the Principal Component Analysis (PCA)

Analyses carried out on examples of detected defects echoes showed clearly that one can describe these detected forms according to a whole of characteristic parameters in order to be able to make discrimination between a planar defect and a volumic defect. This work answers to a problem of ultrasonics NDT like Identification of the defects. The problems as well as the objective of this realized work, are divided in three parts: Extractions of the parameters of wavelets from the ultrasonic echo of the detected defect - the second part is devoted to principal components analysis (PCA) for optimization of the attributes vector. And finally to establish the algorithm of classification (SVM, Support Vector Machine) which allows discrimination between a plane defect and a volumic defect. We have completed this work by a conclusion where we draw up a summary of the completed works, as well as the robustness of the various algorithms proposed in this study.

Similarity Measures and Weighted Fuzzy C-Mean Clustering Algorithm

In this paper we study the fuzzy c-mean clustering algorithm combined with principal components method. Demonstratively analysis indicate that the new clustering method is well rather than some clustering algorithms. We also consider the validity of clustering method.