Cytotoxic Effects of Engineered Nanoparticles in Human Mesenchymal Stem Cells

Engineered nanoparticles’ usage rapidly increased in various applications in the last decade due to their unusual properties. However, there is an ever increasing concern to understand their toxicological effect in human health. Particularly, metal and metal oxide nanoparticles have been used in various sectors including biomedical, food and agriculture. But their impact on human health is yet to be fully understood. In this present investigation, we assessed the toxic effect of engineered nanoparticles (ENPs) including Ag, MgO and Co3O4 nanoparticles (NPs) on human mesenchymal stem cells (hMSC) adopting cell viability and cellular morphological changes as tools The results suggested that silver NPs are more toxic than MgO and Co3O4NPs. The ENPs induced cytotoxicity and nuclear morphological changes in hMSC depending on dose. The cell viability decreases with increase in concentration of ENPs. The cellular morphology studies revealed that ENPs damaged the cells. These preliminary findings have implications for the use of these nanoparticles in food industry with systematic regulations.

Runoff Quality and Pollution Loading from a Residential Catchment in Miri, Sarawak

Urban non-point source (NPS) pollution for a residential catchment in Miri, Sarawak was investigated for two storm events in 2011. Runoff from two storm events were sampled and tested for water quality parameters including TSS, BOD5, COD, NH3-N, NO3-N, NO2-N, P and Pb. Concentration of the water quality parameters was found to vary significantly between storms and the pollutant of concern was found to be NO3-N, TSS, COD and Pb. Results were compared to the Interim National Water Quality Standards for Malaysia (INWQS),and the stormwater runoff from the study can be classified as polluted, exceeding class III water quality, especially in terms of TSS, COD, and NH3-N with maximum EMCs of 158, 135, and 2.17 mg/L, respectively.

Anticancer Effect of Doxorubicin Loaded Heparin based Super-paramagnetic Iron oxide Nanoparticles against the Human Ovarian Cancer Cells

This study determines the effect of naked and heparinbased super-paramagnetic iron oxide nanoparticles on the human cancer cell lines of A2780. Doxorubicin was used as the anticancer drug, entrapped in the SPIO-NPs. This study aimed to decorate nanoparticles with heparin, a molecular ligand for 'active' targeting of cancerous cells and the application of modified-nanoparticles in cancer treatment. The nanoparticles containing the anticancer drug DOX were prepared by a solvent evaporation and emulsification cross-linking method. The physicochemical properties of the nanoparticles were characterized by various techniques, and uniform nanoparticles with an average particle size of 110±15 nm with high encapsulation efficiencies (EE) were obtained. Additionally, a sustained release of DOX from the SPIO-NPs was successful. Cytotoxicity tests showed that the SPIO-DOX-HP had higher cell toxicity than the individual HP and confocal microscopy analysis confirmed excellent cellular uptake efficiency. These results indicate that HP based SPIO-NPs have potential uses as anticancer drug carriers and also have an enhanced anticancer effect.