Analysis of Lead Time Delays in Supply Chain: A Case Study

Lead time is a critical measure of a supply chain's performance. It impacts both the customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages respectively: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines was extracted from the company's records to use for this study. The sample data entails information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each stage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered later than the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impacts on lead time. Data analysis on the stages of lead time indicates that stage 2 consumed over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each stage. Recommendation was given to resolve the problem.

Integrating Big Island Layout with Pull System for Production Optimization

Lean manufacturing is a production philosophy made popular by Toyota Motor Corporation (TMC). It is globally known as the Toyota Production System (TPS) and has the ultimate aim of reducing cost by thoroughly eliminating wastes or muda. TPS embraces the Just-in-time (JIT) manufacturing; achieving cost reduction through lead time reduction. JIT manufacturing can be achieved by implementing Pull system in the production. Furthermore, TPS aims to improve productivity and creating continuous flow in the production by arranging the machines and processes in cellular configurations. This is called as Cellular Manufacturing Systems (CMS). This paper studies on integrating the CMS with the Pull system to establish a Big Island-Pull system production for High Mix Low Volume (HMLV) products in an automotive component industry. The paper will use the build-in JIT system steps adapted from TMC to create the Pull system production and also create a shojinka line which, according to takt time, has the flexibility to adapt to demand changes simply by adding and taking out manpower. This will lead to optimization in production.