The Effect of Static Balance Enhance by Table Tennis Training Intervening on Deaf Children

Children with hearing impairment have deficits of balance and motors. Although most of parents teach deaf children communication skills in early life, but rarely teach the deficits of balance. The purpose of this study was to investigate whether static balance improved after table tennis training. Table tennis training was provided four times a week for eight weeks to two 12-year-old deaf children. The table tennis training included crossover footwork, sideway attack, backhand block-sideways-flutter forehand attack, and one-on-one tight training. Data were gathered weekly and statistical comparisons were made with a paired t-test. We observed that the dominant leg is better than the non-dominant leg in static balance and girl balance ability is better than boy. The final result shows that table tennis training significantly improves the deaf children’s static balance performance. It indicates that table tennis training on deaf children helps the static balance ability.

A Review on Light Shafts Rendering for Indoor Scenes

Rendering light shafts is one of the important topics in computer gaming and interactive applications. The methods and models that are used to generate light shafts play crucial role to make a scene more realistic in computer graphics. This article discusses the image-based shadows and geometric-based shadows that contribute in generating volumetric shadows and light shafts, depending on ray tracing, radiosity, and ray marching technique. The main aim of this study is to provide researchers with background on a progress of light scattering methods so as to make it available for them to determine the technique best suited to their goals. It is also hoped that our classification helps researchers find solutions to the shortcomings of each method.

Assessing the Actual Status and Farmer’s Attitude towards Agroforestry in Chiniot, Pakistan

In Pakistan, major demands of fuel wood and timber wood are fulfilled by agroforestry. However, the information regarding economic significance of agroforestry and its productivity in Pakistan is still insufficient and unreliable. Survey of field conditions to examine the agroforestry status at local level helps us to know the future trends and to formulate the policies for sustainable wood supply. The objectives of this research were to examine the actual status and potential of agroforestry and to point out the barriers that are faced by farmers in the adoption of agroforestry. Research was carried out in Chiniot district, Pakistan because it is the famous city for furniture industry that is largely dependent on farm trees. A detailed survey of district Chiniot was carried out from 150 randomly selected farmer respondents using multi-objective oriented and pre-tested questionnaire. It was found that linear tree planting method was more adopted (45%) as compared to linear + interplanting (42%) and/or compact planting (12.6%). Chi-square values at P-value

Method of Estimating Absolute Entropy of Municipal Solid Waste

Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.

Structural Health Monitoring of Buildings and Infrastructure

Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.

Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network

Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme.

Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Machine Learning Approach for Identifying Dementia from MRI Images

This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.

Use of Visualization Techniques for Active Learning Engagement in Environmental Science Engineering Courses

Active learning strategies have completely rewritten the concept of teaching and learning. Academicians have clocked back to Socratic approaches of questioning. Educators have started implementing active learning strategies for effective learning with the help of tools and technology. As Generation-Y learners are mostly visual, engaging them using visualization techniques play a vital role in their learning process. The facilitator has an important role in intrinsically motivating the learners using different approaches to create self-learning interests. Different visualization techniques were used along with lectures to help students understand and appreciate the concepts. Anonymous feedback was collected from learners. The consolidated report shows that majority of learners accepted the usage of visualization techniques was helpful in understanding concepts as well as create interest in learning the course. This study helps to understand, how the use of visualization techniques help the facilitator to engage learners effectively as well create and intrinsic motivation for their learning.

Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Investigating Prostaglandin E2 and Intracellular Oxidative Stress Levels in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages upon Treatment with Strobilanthes crispus

Background: Uncontrolled inflammation may cause serious inflammatory diseases if left untreated. Non-steroidal anti-inflammatory drug (NSAIDs) is commonly used to inhibit pro-inflammatory enzymes, thus, reduce inflammation. However, long term administration of NSAIDs leads to various complications. Medicinal plants are getting more attention as it is believed to be more compatible with human body. One of them is a flavonoid-containing medicinal plants, Strobilanthes crispus which has been traditionally claimed to possess anti-inflammatory and antioxidant activities. Nevertheless, its anti-inflammatory activities are yet to be scientifically documented. Objectives: This study aimed to examine the anti-inflammatory activity of S. crispus by investigating its effects on intracellular oxidative stress and prostaglandin E2 (PGE2) levels. Materials and Methods: In this study, the Maximum Non-toxic Dose (MNTD) of methanol extract of both leaves and stems of S. crispus was first determined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenytetrazolium Bromide (MTT) assay. The effects of S. crispus extracts at MNTD and half MNTD (½MNTD) on intracellular ROS as well as PGE2 levels in 1.0 µg/mL LPS-stimulated RAW 264.7 macrophages were then be measured using DCFH-DA and a competitive enzyme immunoassay kit, respectively. Results: The MNTD of leaf extract was determined as 700µg/mL while for stem was as low as 1.4µg/mL. When LPS-stimulated RAW 264.7 macrophages were subjected to the MNTD of S. crispus leaf extract, both intracellular ROS and PGE2 levels were significantly reduced. In contrast, stem extract at both MNTD and ½MNTD did not significantly reduce the PGE2 level, but significantly increased the intracellular ROS level. Conclusion: The methanol leaf extract of S. crispus may possess anti-inflammatory properties as it is able to significantly reduce the intracellular ROS and PGE2 levels of LPS-stimulated cells. Nevertheless, further studies such as investigating the interleukin, nitric oxide and cytokine tumor necrosis factor-α (TNFα) levels has to be conducted to further confirm the anti-inflammatory properties of S. crispus.

Designing Creative Events with Deconstructivism Approach

Deconstruction is an approach that is entirely incompatible with the traditional prevalent architecture. Considering the fact that this approach attempts to put architecture in sharp contrast with its opposite events and transpires with attending to the neglected and missing aspects of architecture and deconstructing its stable structures. It also recklessly proceeds beyond the existing frameworks and intends to create a different and more efficient prospect for space. The aim of deconstruction architecture is to satisfy both the prospective and retrospective visions as well as takes into account all tastes of the present in order to transcend time. Likewise, it ventures to fragment the facts and symbols of the past and extract new concepts from within their heart, which coincide with today’s circumstances. Since this approach is an attempt to surpass the limits of the prevalent architecture, it can be employed to design places in which creative events occur and imagination and ambition flourish. Thought-provoking artistic events can grow and mature in such places and be represented in the best way possible to all people. The concept of event proposed in the plan grows out of the interaction between space and creation. In addition to triggering surprise and high impressions, it is also considered as a bold journey into the suspended realms of the traditional conflicts in architecture such as architecture-landscape, interior-exterior, center-margin, product-process, and stability-instability. In this project, at first, through interpretive-historical research method and examining the inputs and data collection, recognition and organizing takes place. After evaluating the obtained data using deductive reasoning, the data is eventually interpreted. Given the fact that the research topic is in its infancy and there is not a similar case in Iran with limited number of corresponding instances across the world, the selected topic helps to shed lights on the unrevealed and neglected parts in architecture. Similarly, criticizing, investigating and comparing specific and highly prized cases in other countries with the project under study can serve as an introduction into this architecture style.

Applying Participatory Design for the Reuse of Deserted Community Spaces

The concept of community building started in 1994 in Taiwan. After years of development, it fostered the notion of active local resident participation in community issues as co-operators, instead of minions. Participatory design gives participants more control in the decision-making process, helps to reduce the friction caused by arguments and assists in bringing different parties to consensus. This results in an increase in the efficiency of projects run in the community. Therefore, the participation of local residents is key to the success of community building. This study applied participatory design to develop plans for the reuse of deserted spaces in the community from the first stage of brainstorming for design ideas, making creative models to be employed later, through to the final stage of construction. After conducting a series of participatory designed activities, it aimed to integrate the different opinions of residents, develop a sense of belonging and reach a consensus. Besides this, it also aimed at building the residents’ awareness of their responsibilities for the environment and related issues of sustainable development. By reviewing relevant literature and understanding the history of related studies, the study formulated a theory. It took the “2012-2014 Changhua County Community Planner Counseling Program” as a case study to investigate the implementation process of participatory design. Research data are collected by document analysis, participants’ observation and in-depth interviews. After examining the three elements of “Design Participation”, “Construction Participation”, and” Follow–up Maintenance Participation” in the case, the study emerged with a promising conclusion: Maintenance works were carried out better compared to common public works. Besides this, maintenance costs were lower. Moreover, the works that residents were involved in were more creative. Most importantly, the community characteristics could be easy be recognized.

Usage of Military Spending, Debt Servicing and Growth for Dealing with Emergency Plan of Indian External Debt

This study investigates the relationship between external debt and military spending in case of India over the period of 1970–2012. In doing so, we have applied the structural break unit root tests to examine stationarity properties of the variables. The Auto-Regressive Distributed Lag (ARDL) bounds testing approach is used to test whether cointegration exists in presence of structural breaks stemming in the series. Our results indicate the cointegration among external debt, military spending, debt servicing, and economic growth. Moreover, military spending and debt servicing add in external debt. Economic growth helps in lowering external debt. The Vector Error Correction Model (VECM) analysis and Granger causality test reveal that military spending and economic growth cause external debt. The feedback effect also exists between external debt and debt servicing in case of India.

Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel

Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.

Temperature Distribution Enhancement in a Conical Diffuser Fitted with Helical Screw-Tape with and without Center-Rod

Temperature distribution investigation in a conical diffuser fitted with helical screw-tape with and without center-rod is studied numerically. A helical screw-tape is inserted in the diffuser to create swirl flow that helps to enhance the temperature distribution rate with inlet Reynolds number 4.3 x 104. Three pitch lengths ratios (Y/L = 0.153, 0.23 and 0.307) for the helical screw-tape with and without center-rod are simulated and compared. The geometry of the conical diffuser and the inlet condition for both arrangements are kept constant. Numerical findings show that the helical screw-tape inserts without center-rod perform significantly better than the helical tape inserts with center-rod in the conical diffuser.

Modeling the Impact of Controls on Information System Risks

Information system risk management helps to reduce or eliminate risk by implementing appropriate controls. In this paper, we propose a quantification model of controls impact on information system risks by automatizing the residual criticality estimation step of FMECA which is based on a inductive reasoning. For this, we defined three equations based on type and maturity of controls. For testing, the values obtained with the model were compared to estimated values given by interlocutors during different working sessions and the result is satisfactory. This model allows an optimal assessment of controls maturity and facilitates risk analysis of information system.

Modified Scaling-Free CORDIC Based Pipelined Parallel MDC FFT and IFFT Architecture for Radix 2^2 Algorithm

An innovative approach to develop modified scaling free CORDIC based two parallel pipelined Multipath Delay Commutator (MDC) FFT and IFFT architectures for radix 22 FFT algorithm is presented. Multipliers and adders are the most important data paths in FFT and IFFT architectures. Multipliers occupy high area and consume more power. In order to optimize the area and power overhead, modified scaling-free CORDIC based complex multiplier is utilized in the proposed design. In general twiddle factor values are stored in RAM block. In the proposed work, modified scaling-free CORDIC based twiddle factor generator unit is used to generate the twiddle factor and efficient switching units are used. In addition to this, four point FFT operations are performed without complex multiplication which helps to reduce area and power in the last two stages of the pipelined architectures. The design proposed in this paper is based on multipath delay commutator method. The proposed design can be extended to any radix 2n based FFT/IFFT algorithm to improve the throughput. The work is synthesized using Synopsys design Compiler using TSMC 90-nm library. The proposed method proves to be better compared to the reference design in terms of area, throughput and power consumption. The comparative analysis of the proposed design with Xilinx FPGA platform is also discussed in the paper.

A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System

The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.