Adaptive Skin Segmentation Using Color Distance Map

In this paper an effective approach for segmenting human skin regions in images taken at different environment is proposed. The proposed method uses a color distance map that is flexible enough to reliably detect the skin regions even if the illumination conditions of the image vary. Local image conditions is also focused, which help the technique to adaptively detect differently illuminated skin regions of an image. Moreover, usage of local information also helps the skin detection process to get rid of picking up much noisy pixels.

Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier

Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.

Improved Segmentation of Speckled Images Using an Arithmetic-to-Geometric Mean Ratio Kernel

In this work, we improve a previously developed segmentation scheme aimed at extracting edge information from speckled images using a maximum likelihood edge detector. The scheme was based on finding a threshold for the probability density function of a new kernel defined as the arithmetic mean-to-geometric mean ratio field over a circular neighborhood set and, in a general context, is founded on a likelihood random field model (LRFM). The segmentation algorithm was applied to discriminated speckle areas obtained using simple elliptic discriminant functions based on measures of the signal-to-noise ratio with fractional order moments. A rigorous stochastic analysis was used to derive an exact expression for the cumulative density function of the probability density function of the random field. Based on this, an accurate probability of error was derived and the performance of the scheme was analysed. The improved segmentation scheme performed well for both simulated and real images and showed superior results to those previously obtained using the original LRFM scheme and standard edge detection methods. In particular, the false alarm probability was markedly lower than that of the original LRFM method with oversegmentation artifacts virtually eliminated. The importance of this work lies in the development of a stochastic-based segmentation, allowing an accurate quantification of the probability of false detection. Non visual quantification and misclassification in medical ultrasound speckled images is relatively new and is of interest to clinicians.

Are XBRL-based Financial Reports Better than Non-XBRL Reports? A Quality Assessment

Using a scoring system, this paper provides a comparative assessment of the quality of data between XBRL formatted financial reports and non-XBRL financial reports. It shows a major improvement in the quality of data of XBRL formatted financial reports. Although XBRL formatted financial reports do not show much advantage in the quality at the beginning, XBRL financial reports lately display a large improvement in the quality of data in almost all aspects. With the improved XBRL web data managing, presentation and analysis applications, XBRL formatted financial reports have a much better accessibility, are more accurate and better in timeliness.

Advanced Micromanufacturing for Ultra Precision Part by Soft Lithography and Nano Powder Injection Molding

Recently, the advanced technologies that offer high precision product, relative easy, economical process and also rapid production are needed to realize the high demand of ultra precision micro part. In our research, micromanufacturing based on soft lithography and nanopowder injection molding was investigated. The silicone metal pattern with ultra thick and high aspect ratio succeeds to fabricate Polydimethylsiloxane (PDMS) micro mold. The process followed by nanopowder injection molding (PIM) by a simple vacuum hot press. The 17-4ph nanopowder with diameter of 100 nm, succeed to be injected and it forms green sample microbearing with thickness, microchannel and aspect ratio is 700μm, 60μm and 12, respectively. Sintering process was done in 1200 C for 2 hours and heating rate 0.83oC/min. Since low powder load (45% PL) was applied to achieve green sample fabrication, ~15% shrinkage happen in the 86% relative density. Several improvements should be done to produce high accuracy and full density sintered part.

Investigating Financial Literacy among Emiratis

Financial literacy is one of the key factors needed in making informed financial decisions. As businesses continue to be more profit driven, more financial and economic intrigues arise that continue to put individuals at the risk of spending more and more without considering the short term and long term effects. We conducted a study to assess financial literacy and financial decision making among Emiratis. Our results show that financial literacy is lacking among Emiratis. Also, almost half of respondents owe loans to other peoples and 1/5 of them have bank loans. We expect that the outcome of this research will be useful for designing educational programs and policies to promote financial planning and security among Emiratis. We also posit that deeper and more informed understanding of this problem is a precursor for developing effective financial education programs with the aim of improving financial decision- making among Emiratis.

Novel Structural Insights of Glutamate Racemase from Mycobacterium tuberculosis through Modeling and Docking Studies

An alarming emergence of multidrug-resistant strains of the tuberculosis pathogen Mycobacterium tuberculosis and continuing high worldwide incidence of tuberculosis has invigorated the search for novel drug targets. The enzyme glutamate racemase (MurI) in bacteria catalyzes the stereoconversion of L-glutamate to D-glutamate which is a component of the peptidoglycan cell wall of the bacterium. The inhibitors targeted against MurI from several bacterial species have been patented and are advocated as promising antibacterial agents. However there are none available against MurI from Mycobacterium tuberculosis, due to the lack of its threedimensional structure. This work accomplished two major objectives. First, the tertiary structure of MtMurI was deduced computationally through homology modeling using the templates from bacterial homologues. It is speculated that like in other Gram-positive bacteria, MtMurI exists as a dimer and many of the protein interactions at the dimer interface are also conserved. Second, potent candidate inhibitors against MtMurI were identified through docking against already known inhibitors in other organisms.

Application of Load Transfer Technique for Distribution Power Flow Analysis

Installation of power compensation equipment in some cases places additional buses into the system. Therefore, a total number of power flow equations and voltage unknowns increase due to additional locations of installed devices. In this circumstance, power flow calculation is more complicated. It may result in a computational convergence problem. This paper presents a power flow calculation by using Newton-Raphson iterative method together with the proposed load transfer technique. This concept is to eliminate additional buses by transferring installed loads at the new buses to existing two adjacent buses. Thus, the total number of power flow equations is not changed. The overall computational speed is expectedly shorter than that of solving the problem without applying the load transfer technique. A 15-bus test system is employed for test to evaluate the effectiveness of the proposed load transfer technique. As a result, the total number of iteration required and execution time is significantly reduced.

Steady-State Performance of a New Model for UPFC Applied to Multi-Machines System with Nonlinear Load

In this paper, a new developed construction model of the UPFC is proposed. The construction of this model consists of one shunt compensation block and two series compensation blocks. In this case, the UPFC with the new construction model will be investigated when it is installed in multi-machine systems with nonlinear load model. In addition, the steady–state performance of the new model operating as impedance compensation will be presented and compared with that obtained from the system without compensation.

An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits

In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.

Estimation of Load Impedance in Presence of Harmonics

This paper presents a fast and efficient on-line technique for estimating impedance of unbalanced loads in power systems. The proposed technique is an application of a discrete timedynamic filter based on stochastic estimation theory which is suitable for estimating parameters in noisy environment. The algorithm uses sets of digital samples of the distorted voltage and current waveforms of the non-linear load to estimate the harmonic contents of these two signal. The non-linear load impedance is then calculated from these contents. The method is tested using practical data. Results are reported and compared with those obtained using the conventional least error squares technique. In addition to the very accurate results obtained, the method can detect and reject bad measurements. This can be considered as a very important advantage over the conventional static estimation methods such as the least error square method.

Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow

The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.

Moving Vehicles Detection Using Automatic Background Extraction

Vehicle detection is the critical step for highway monitoring. In this paper we propose background subtraction and edge detection technique for vehicle detection. This technique uses the advantages of both approaches. The practical applications approved the effectiveness of this method. This method consists of two procedures: First, automatic background extraction procedure, in which the background is extracted automatically from the successive frames; Second vehicles detection procedure, which depend on edge detection and background subtraction. Experimental results show the effective application of this algorithm. Vehicles detection rate was higher than 91%.

Revival of the Modern Wing Sails for the Propulsion of Commercial Ships

Over 90% of the world trade is carried by the international shipping industry. As most of the countries are developing, seaborne trade continues to expand to bring benefits for consumers across the world. Studies show that world trade will increase 70-80% through shipping in the next 15-20 years. Present global fleet of 70000 commercial ships consumes approximately 200 million tonnes of diesel fuel a year and it is expected that it will be around 350 million tonnes a year by 2020. It will increase the demand for fuel and also increase the concentration of CO2 in the atmosphere. So, it-s essential to control this massive fuel consumption and CO2 emission. The idea is to utilize a diesel-wind hybrid system for ship propulsion. Use of wind energy by installing modern wing-sails in ships can drastically reduce the consumption of diesel fuel. A huge amount of wind energy is available in oceans. Whenever wind is available the wing-sails would be deployed and the diesel engine would be throttled down and still the same forward speed would be maintained. Wind direction in a particular shipping route is not same throughout; it changes depending upon the global wind pattern which depends on the latitude. So, the wing-sail orientation should be such that it optimizes the use of wind energy. We have made a computer programme in which by feeding the data regarding wind velocity, wind direction, ship-motion direction; we can find out the best wing-sail position and fuel saving for commercial ships. We have calculated net fuel saving in certain international shipping routes, for instance, from Mumbai in India to Durban in South Africa. Our estimates show that about 8.3% diesel fuel can be saved by utilizing the wind. We are also developing an experimental model of the ship employing airfoils (small scale wingsail) and going to test it in National Wind Tunnel Facility in IIT Kanpur in order to develop a control mechanism for a system of airfoils.

Learning Block Memories with Metric Networks

An attractor neural network on the small-world topology is studied. A learning pattern is presented to the network, then a stimulus carrying local information is applied to the neurons and the retrieval of block-like structure is investigated. A synaptic noise decreases the memory capability. The change of stability from local to global attractors is shown to depend on the long-range character of the network connectivity.

Post-Cracking Behaviour of High Strength Fiber Concrete Prediction and Validation

Fracture process in mechanically loaded steel fiber reinforced high-strength (SFRHSC) concrete is characterized by fibers bridging the crack providing resistance to its opening. Structural SFRHSC fracture model was created; material fracture process was modeled, based on single fiber pull-out laws, which were determined experimentally (for straight fibers, fibers with end hooks (Dramix), and corrugated fibers (Tabix)) as well as obtained numerically ( using FEM simulations). For this purpose experimental program was realized and pull-out force versus pull-out fiber length was obtained (for fibers embedded into concrete at different depth and under different angle). Model predictions were validated by 15x15x60cm prisms 4 point bending tests. Fracture surfaces analysis was realized for broken prisms with the goal to improve elaborated model assumptions. Optimal SFRHSC structures were recognized.

An Intelligent Approach of Rough Set in Knowledge Discovery Databases

Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.

HERMES System: a Virtual Reality Simulator for the Angioplasty Intervention Training

One of the essential requirements in order to have a realistic surgical simulator is real-time interaction by means of a haptic interface is. In fact, reproducing haptic sensations increases the realism of the simulation. However, the interaction need to be performed in real-time, since a delay between the user action and the system reaction reduces the user immersion. In this paper, we present a prototype of the coronary stent implant simulator developed in the HERMES Project; this system allows real-time interactions with a artery by means of a specific haptic device; thus the user can interactively navigate in a reconstructed artery and force feedback is produced when contact occurs between the artery walls and the medical instruments

Representing Uncertainty in Computer-Generated Forces

The Integrated Performance Modelling Environment (IPME) is a powerful simulation engine for task simulation and performance analysis. However, it has no high level cognition such as memory and reasoning for complex simulation. This article introduces a knowledge representation and reasoning scheme that can accommodate uncertainty in simulations of military personnel with IPME. This approach demonstrates how advanced reasoning models that support similarity-based associative process, rule-based abstract process, multiple reasoning methods and real-time interaction can be integrated with conventional task network modelling to provide greater functionality and flexibility when modelling operator performance.

On the Application of Meta-Design Techniques in Hardware Design Domain

System-level design based on high-level abstractions is becoming increasingly important in hardware and embedded system design. This paper analyzes meta-design techniques oriented at developing meta-programs and meta-models for well-understood domains. Meta-design techniques include meta-programming and meta-modeling. At the programming level of design process, metadesign means developing generic components that are usable in a wider context of application than original domain components. At the modeling level, meta-design means developing design patterns that describe general solutions to the common recurring design problems, and meta-models that describe the relationship between different types of design models and abstractions. The paper describes and evaluates the implementation of meta-design in hardware design domain using object-oriented and meta-programming techniques. The presented ideas are illustrated with a case study.