Hybridization and Evaluation of Jatropha (Jatropha curcas L.) to Improve High Yield Varieties in Indonesia

Jatropha curcas L. is one of the crops producing non edible oil which is potential for bio-energy. Jatropha cultivation and development program in Indonesia is facing several problems especially low seed yield resulting in inefficient crop cultivation cost. To cope with the problem, development of high yielding varieties is necessary. Development of varieties to improve seed yield was conducted by hybridization and selection, and resulted in 14 potential genotypes. The yield potential of the 14 genotypes were evaluated and compared with two check varieties. The objective of the evaluation was to find Jatropha hybrids with some characters i.e. productivity higher than check varieties, oil content > 40% and harvesting age ≤ 110 days. Hybridization and individual plant selection were carried out from 2010 to 2014. Evaluation of high yield was conducted in Asembagus experimental station, Situbondo, East Java in three years (2015-2017). The experimental designed was Randomized Complete Block Design with three replication and plot size of 10 m x 8 m. The characters observed were number of capsules per plant, dry seed yield (kg/ha) and seed oil content (%). The results of this experiment indicated that all the hybrids evaluated have higher productivity than check variety IP-3A. There were two superior hybrids i.e. HS-49xSP-65/32 and HS-49xSP-19/28 with highest seed yield per hectare and number of capsules per plant during three years.

Jatropha curcas L. Oil Selectivity in Froth Flotation

In Brazil, most soils are acidic and low in essential nutrients required for the growth and development of plants, making fertilizers essential for agriculture. As the biggest producer of soy in the world and a major producer of coffee, sugar cane and citrus fruits, Brazil is a large consumer of phosphate. Brazilian’s phosphate ores are predominantly from igneous rocks showing a complex mineralogy, associated with carbonites and oxides, typically iron, silicon and barium. The adopted industrial concentration circuit for this type of ore is a mix between magnetic separation (both low and high field) to remove the magnetic fraction and a froth flotation circuit composed by a reverse flotation of apatite (barite’s flotation) followed by direct flotation circuit (rougher, cleaner and scavenger circuit). Since the 70’s fatty acids obtained from vegetable oils are widely used as lower-cost collectors in apatite froth flotation. This is a very effective approach to the apatite family of minerals, being that this type of collector is both selective and efficient (high recovery). This paper presents Jatropha curcas L. oil (JCO) as a renewable and sustainable source of fatty acids with high selectivity in froth flotation of apatite. JCO is considerably rich in fatty acids such as linoleic, oleic and palmitic acid. The experimental campaign involved 216 tests using a modified Hallimond tube and two different minerals (apatite and quartz). In order to be used as a collector, the oil was saponified. The results found were compared with the synthetic collector, Fotigam 5806 produced by Clariant, which is composed mainly by soy oil. JCO showed the highest selectivity for apatite flotation with cold saponification at pH 8 and concentration of 2.5 mg/L. In this case, the mineral recovery was around 95%.