Abstract: Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.
Abstract: This research study aims to present a retrospective
study about speech recognition systems and artificial intelligence.
Speech recognition has become one of the widely used technologies,
as it offers great opportunity to interact and communicate with
automated machines. Precisely, it can be affirmed that speech
recognition facilitates its users and helps them to perform their daily
routine tasks, in a more convenient and effective manner. This
research intends to present the illustration of recent technological
advancements, which are associated with artificial intelligence.
Recent researches have revealed the fact that speech recognition is
found to be the utmost issue, which affects the decoding of speech. In
order to overcome these issues, different statistical models were
developed by the researchers. Some of the most prominent statistical
models include acoustic model (AM), language model (LM), lexicon
model, and hidden Markov models (HMM). The research will help in
understanding all of these statistical models of speech recognition.
Researchers have also formulated different decoding methods, which
are being utilized for realistic decoding tasks and constrained
artificial languages. These decoding methods include pattern
recognition, acoustic phonetic, and artificial intelligence. It has been
recognized that artificial intelligence is the most efficient and reliable
methods, which are being used in speech recognition.
Abstract: Gesture recognition is a challenging task for extracting
meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture,
in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using
Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo
color image sequences. These topologies are considered to different
number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection
with static velocity motion for continuous gesture. Therefore, the
LRB topology in conjunction with Baum-Welch (BW) algorithm for
training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.