Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash

The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.

An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support

The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.

Health Risk Assessment of Heavy Metals in the Contaminated and Uncontaminated Soils

Application of health risk assessment methods is important in order to comprehend the risk of human exposure to heavy metals and other dangerous pollutants. Four soil samples were collected at distances of 10, 20, 30 m and the control 100 m away from the dump site at depths of 0.3, 0.6 and 0.9 m. The collected soil samples were examined for Zn, Cu, Pb, Cd and Ni using standard methods. The health risks via the main pathways of human exposure to heavy metal were detected using relevant standard equations. Hazard quotient was calculated to determine non-carcinogenic health risk for each individual heavy metal. Life time cancer risk was calculated to determine the cumulative life cancer rating for each exposure pathway. The estimated health risk values for adults and children were generally lower than the reference dose. The calculated hazard quotient for the ingestion, inhalation and dermal contact pathways were less than unity. This means that there is no detrimental concern to the health on human exposure to heavy metals in contaminated soil. The life time cancer risk 5.4 × 10-2 was higher than the acceptable threshold value of 1 × 10-4 which is reflected to have significant health effects on human exposure to heavy metals in contaminated soil. Good hygienic practices are recommended to ease the potential risk to children and adult who are exposed to contaminated soils. Also, the local authorities should be made aware of such health risks for the purpose of planning the management strategy accordingly.

Pictorial Multimodal Analysis of Selected Paintings of Salvador Dali

Multimodality involves the communication between verbal and visual components in various discourses. A painting represents a form of communication between the artist and the viewer in terms of colors, shades, objects, and the title. This paper aims to present how multimodality can be used to decode the verbal and visual dimensions a painting holds. For that purpose, this study uses Kress and van Leeuwen’s theoretical framework of visual grammar for the analysis of the multimodal semiotic resources of selected paintings of Salvador Dali. This study investigates the visual decoding of the selected paintings of Salvador Dali and analyzing their social and political meanings using Kress and van Leeuwen’s framework of visual grammar. The paper attempts to answer the following questions: 1. How far can multimodality decode the verbal and non-verbal meanings of surrealistic art? 2. How can Kress and van Leeuwen’s theoretical framework of visual grammar be applied to analyze Dali’s paintings? 3. To what extent is Kress and van Leeuwen’s theoretical framework of visual grammar apt to deliver political and social messages of Dali? The paper reached the following findings: the framework’s descriptive tools (representational, interactive, and compositional meanings) can be used to analyze the paintings’ title and their visual elements. Social and political messages were delivered by appropriate usage of color, gesture, vectors, modality, and the way social actors were represented.

Palestine Smart Tourism Augmented Reality Mobile Application

Tourism is considered an important sector for most countries, while maintaining good tourism attractions can promote national economic development. The State of Palestine is historically considered a wealthy country full of many archaeological places. In the city of Bethlehem, for example, the Church of the Nativity is the most important touristic site, but it does not have enough technology development to attract tourists. In this paper, we propose a smart mobile application named “Pal-STAR” (Palestine Smart Tourist Augmented Reality) as an innovative solution which targets tourists and assists them to make a visit inside the Church of the Nativity. The application will use augmented reality and feature a virtual tourist guide showing views of the church while providing historical information in a smart, easy, effective and user-friendly way. The proposed application is compatible with multiple mobile platforms and is considered user friendly. The findings show that this application will improve the practice of the tourism sector in the Holy Land, it will also increase the number of tourists visiting the Church of the Nativity and it will facilitate access to historical data that have been difficult to obtain using traditional tourism guidance. The value that tourism adds to a country cannot be denied, and the more technological advances are incorporated in this sector, the better the country’s tourism sector can be served. Palestine’s economy is heavily dependent on tourism in many of its main cities, despite several limitations, and technological development is needed to enable this sector to flourish. The proposed mobile application would definitely have a good impact on the development of the tourism sector by creating an Augmented Reality environment for tourists inside the church, helping them to navigate and learn about holy places in a non-traditional way, using a virtual tourist guide.

Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District

Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.

Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair

In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ. 

An Overview of Construction and Demolition Waste as Coarse Aggregate in Concrete

Fast development of the total populace and far and wide urbanization has surprisingly expanded the advancement of the construction industry. As a result of these activities, old structures are being demolished to make new buildings. Due to these large-scale demolitions, a huge amount of debris is generated all over the world, which results in a landfill. The use of construction and demolition waste as landfill causes groundwater contamination, which is hazardous. Using construction and demolition waste as aggregate can reduce the use of natural aggregates and the problem of mining. The objective of this study is to provide a detailed overview on how the construction and demolition waste material has been used as aggregate in structural concrete. In this study, the preparation, classification, and composition of construction and demolition wastes are also discussed.

Reinforcement Learning-Based Coexistence Interference Management in Wireless Body Area Networks

Current trends in remote health monitoring to monetize on the Internet of Things applications have been raised in efficient and interference free communications in Wireless Body Area Network (WBAN) scenario. Co-existence interference in WBANs have aggravates the over-congested radio bands, thereby requiring efficient Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) strategies and improve interference management. Existing solutions utilize simplistic heuristics to approach interference problems. The scope of this research article is to investigate reinforcement learning for efficient interference management under co-existing scenarios with an emphasis on homogenous interferences. The aim of this paper is to suggest a smart CSMA/CA mechanism based on reinforcement learning called QIM-MAC that effectively uses sense slots with minimal interference. Simulation results are analyzed based on scenarios which show that the proposed approach maximized Average Network Throughput and Packet Delivery Ratio and minimized Packet Loss Ratio, Energy Consumption and Average Delay.

Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes

In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.

Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel

The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.

A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution

Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.

Deployment of a Biocompatible International Space Station into Geostationary Orbit

This study explores the possibility of a space station that will occupy a geostationary equatorial orbit (GEO) and create artificial gravity using centripetal acceleration. The concept of the station is to create a habitable, safe environment that can increase the possibility of space tourism by reducing the wide variation of hazards associated with space exploration. The ability to control the intensity of artificial gravity through Hall-effect thrusters will allow experiments to be carried out at different levels of artificial gravity. A feasible prototype model was built to convey the concept and to enable cost estimation. The SpaceX Falcon Heavy rocket with a 26,700 kg payload to GEO was selected to take the 675 tonne spacecraft into orbit; space station construction will require up to 30 launches, this would be reduced to 5 launches when the SpaceX BFR becomes available. The estimated total cost of implementing the Sussex Biocompatible International Space Station (BISS) is approximately $47.039 billion, which is very attractive when compared to the cost of the International Space Station, which cost $150 billion.

Identifying Areas on the Pavement Where Rain Water Runoff Affects Motorcycle Behavior

It is very well known that certain vertical and longitudinal slopes have to be assured in order to achieve adequate rainwater runoff from the pavement. The selection of longitudinal slopes, between the turning points of the vertical curves that meet the afore-mentioned requirement does not ensure adequate drainage because the same condition must also be applied at the transition curves. In this way none of the pavement edges’ slopes (as well as any other spot that lie on the pavement) will be opposite to the longitudinal slope of the rotation axis. Horizontal and vertical alignment must be properly combined in order to form a road which resultant slope does not take small values and hence, checks must be performed in every cross section and every chainage of the road. The present research investigates the rain water runoff from the road surface in order to identify the conditions under which, areas of inadequate drainage are being created, to analyze the rainwater behavior in such areas, to provide design examples of good and bad drainage zones and to track down certain motorcycle types which might encounter hazardous situations due to the presence of water film between the pavement and both of their tires resulting loss of traction. Moreover, it investigates the combination of longitudinal and cross slope values in critical pavement areas. It should be pointed out that the drainage gradient is analytically calculated for the whole road width and not just for an oblique slope per chainage (combination of longitudinal grade and cross slope). Lastly, various combinations of horizontal and vertical design are presented, indicating the crucial zones of bad pavement drainage. The key conclusion of the study is that any type of motorcycle will travel for some time inside the area of improper runoff for a certain time frame which depends on the speed and the trajectory that the rider chooses along the transition curve. Taking into account that on this section the rider will have to lean his motorcycle and hence reduce the contact area of his tire with the pavement it is apparent that any variations on the friction value due to the presence of a water film may lead to serious problems regarding his safety. The water runoff from the road pavement is improved when between reverse longitudinal slopes, crest instead of sag curve is chosen and particularly when its edges coincide with the edges of the horizontal curve. Lastly, the results of the investigation have shown that the variation of the longitudinal slope involves the vertical shift of the center of the poor water runoff area. The magnitude of this area increases as the length of the transition curve increases.

Dynamics of Protest Mobilization and Rapid Demobilization in Post-2001 Afghanistan: Facing Enlightening Movement

Taking a relational approach, this paper analyzes the causal mechanisms associated with successful mobilization and rapid demobilization of the Enlightening Movement in post-2001 Afghanistan. The movement emerged after the state-owned Da Afghan Bereshna Sherkat (DABS) decided to divert the route for the Turkmenistan-Uzbekistan-Tajikistan-Afghanistan-Pakistan (TUTAP) electricity project. The grid was initially planned to go through the Hazara-inhabited province of Bamiyan, according to Afghanistan’s Power Sector Master Plan. The reroute served as an aide-mémoire of historical subordination to other ethno-religious groups for the Hazara community. It was also perceived as deprivation from post-2001 development projects, financed by international aid. This torched the accumulated grievances, which then gave birth to the Enlightening Movement. The movement had a successful mobilization. However, it demobilized after losing much of its mobilizing capabilities through an amalgamation of external and internal relational factors. The successful mobilization yet rapid demobilization constitutes the puzzle of this paper. From the theoretical perspective, this paper is significant as it establishes the applicability of contentious politics theory to protest mobilizations that occurred in Afghanistan, a context-specific, characterized by ethnic politics. Both primary and secondary data are utilized to address the puzzle. As for the primary resources, media coverage, interviews, reports, public media statements of the movement, involved in contentious performances, and data from Social Networking Services (SNS) are used. The covered period is from 2001-2018. As for the secondary resources, published academic articles and books are used to give a historical account of contentious politics. For data analysis, a qualitative comparative historical method is utilized to uncover the causal mechanisms associated with successful mobilization and rapid demobilization of the Movement. In this pursuit, both mobilization and demobilization are considered as larger political processes that could be decomposed to constituent mechanisms. Enlightening Movement’s framing and campaigns are first studied to uncover the associated mechanisms. Then, to avoid introducing some ad hoc mechanisms, the recurrence of mechanisms is checked against another case. Mechanisms qualify as robust if they are “recurrent” in different episodes of contention. Checking the recurrence of causal mechanisms is vital as past contentious events tend to reinforce future events. The findings of this paper suggest that the public sphere in Afghanistan is drastically different from Western democracies known as the birthplace of social movements. In Western democracies, when institutional politics did not respond, movement organizers occupied the public sphere, undermining the legitimacy of the government. In Afghanistan, the public sphere is ethicized. Considering the inter- and intra-relational dynamics of ethnic groups in Afghanistan, the movement reduced to an erosive inter- and intra-ethnic conflict. This undermined the cohesiveness of the movement, which then kicked-off its demobilization process.

Image Haze Removal Using Scene Depth Based Spatially Varying Atmospheric Light in Haar Lifting Wavelet Domain

This paper presents a method for single image dehazing based on dark channel prior (DCP). The property that the intensity of the dark channel gives an approximate thickness of the haze is used to estimate the transmission and atmospheric light. Instead of constant atmospheric light, the proposed method employs scene depth to estimate spatially varying atmospheric light as it truly occurs in nature. Haze imaging model together with the soft matting method has been used in this work to produce high quality haze free image. Experimental results demonstrate that the proposed approach produces better results than the classic DCP approach as color fidelity and contrast of haze free image are improved and no over-saturation in the sky region is observed. Further, lifting Haar wavelet transform is employed to reduce overall execution time by a factor of two to three as compared to the conventional approach.

Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece

The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.

Improving the Safety Performance of Workers by Assessing the Impact of Safety Culture on Workers’ Safety Behaviour in Nigeria Oil and Gas Industry: A Pilot Study in the Niger Delta Region

Interest in the development of appropriate safety culture in the oil and gas industry has taken centre stage among stakeholders in the industry. Human behaviour has been identified as a major contributor to occupational accidents, where abnormal activities associated with safety management are taken as normal behaviour. Poor safety culture is one of the major factors that influence employee’s safety behaviour at work, which may consequently result in injuries and accidents and strengthening such a culture can improve workers safety performance. Nigeria oil and gas industry has contributed to the growth and development of the country in diverse ways. However, in terms of safety and health of workers, this industry is a dangerous place to work as workers are often exposed to occupational safety and health hazard. To ascertain the impact of employees’ safety and how it impacts health and safety compliance within the local industry, online safety culture survey targeting frontline workers within the industry was administered covering major subjects that include; perception of management commitment and style of leadership; safety communication method and its resultant impact on employees’ behaviour; employee safety commitment and training needs. The preliminary result revealed that 54% of the participants feel that there is a lack of motivation from the management to work safely. In addition, 55% of participants revealed that employers place more emphasis on work delivery over employee’s safety on the installation. It is expected that the study outcome will provide measures aimed at strengthening and sustaining safety culture in the Nigerian oil and gas industry.

Evaluation of the Effects of Urban Planning Decisions on Commercial Function and Site Selection Decisions: Ümraniye - Alemdağ Street Pedestrianization Project

Metropolitan areas need urban transformation and urban renewal in terms of their internal Dynamics. Since 1980, the İstanbul Metropolitan area has been started to urban growth, while the population was increasing and it has brought together masses that have different lifestyles and cultures. Commercial and residential areas' spatial needs and decisions are affected by these different lifestyles. As the terms shopping mall and commercial Street became widespread, consumption trends had changed depending on the socio-economic characteristics of the people. Increase in demand for these areas, the number of shopping centers has increased, while the shopping streets started to be as effective as the shopping centers and have been pedestrianized. In this article, the change in commercial area site selection by the dynamics of the population will be examined in cities that diverged from spatial-temporal limitations. In the study, the analysis of multilayered data using geographic information systems (GIS) will be used as a method. With this method, a more synthesistic approach will be introduced with the collection editing, querying, and analysis of geographical data in computer-based systems. While conducting this analysis, Alemdağ Street in the Ümraniye district of İstanbul, where a pedestrian decision was made, will be based on and the change in the commercial and residential functions before and after the pedestrianization decision will be evaluated.