The Effect of Four-Week Resistance Exercise along with Milk Consumption on NT-proBNP and Plasma Troponin I

The aim of this study is to investigate four-week resistance exercise and milk supplement on NT-proBNP and plasma troponin I of male students. Concerning the methodology of the study, 21 senior high school students of Ardebil city were selected. The selected subjects were randomly shared in three groups of control, exercise- water and exercise- milk. The exercise program includes resistance exercise for a big muscle group. The subjects of control group rested during the study and did not participate in any training. The subjects of exercise- water experimental group immediately received 400 cc water after exercise and exercise- milk group immediately received 400 cc low fat milk. Control-water groups consumed the same amount of water. 48 hours before and after the last exercise session, the blood sample of the subjects were taken for measuring the variables. NT-proBNP and Troponin I concentrations were measured by ELISA. For data analysis, one-way variance analysis test, correlated t-test and Bonferroni post hoc test were used. The significant difference of p ≤ 0.05 was accepted. Resistance training along with milk consumption leads to increase of plasma NT-proBNP, however; this increase has not reached the significant level. Furthermore, meaningful increase was observed in plasma NT–proBNP in exercise group between pretest and posttest values. Furthermore, no meaningful difference was observed between groups in terms of Troponin I after milk consumption. It seems that endurance exercises lead to change in the structure of heart muscle and is along with an increase of NT-proBNP. Furthermore, there is the possibility that milk consumption can lead to release of heart troponin I. The mechanism through which protein supplements have been put on heart troponin I is unknown and requires more research.

FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Assessing the Impact of High Fidelity Human Patient Simulation on Teamwork among Nursing, Medicine and Pharmacy Undergraduate Students

High fidelity human patient simulation has been used for many years by health sciences education programs to foster critical thinking, engage learners, improve confidence, improve communication, and enhance psychomotor skills. Unfortunately, there is a paucity of research on the use of high fidelity human patient simulation to foster teamwork among nursing, medicine and pharmacy undergraduate students. This study compared the impact of high fidelity and low fidelity simulation education on teamwork among nursing, medicine and pharmacy students. For the purpose of this study, two innovative teaching scenarios were developed based on the care of an adult patient experiencing acute anaphylaxis: one high fidelity using a human patient simulator and one low fidelity using case based discussions. A within subjects, pretest-posttest, repeated measures design was used with two-treatment levels and random assignment of individual subjects to teams of two or more professions. A convenience sample of twenty-four (n=24) undergraduate students participated, including: nursing (n=11), medicine (n=9), and pharmacy (n=4). The Interprofessional Teamwork Questionnaire was used to assess for changes in students’ perception of their functionality within the team, importance of interprofessional collaboration, comprehension of roles, and confidence in communication and collaboration. Student satisfaction was also assessed. Students reported significant improvements in their understanding of the importance of interprofessional teamwork and of the roles of nursing and medicine on the team after participation in both the high fidelity and the low fidelity simulation. However, only participants in the high fidelity simulation reported a significant improvement in their ability to function effectively as a member of the team. All students reported that both simulations were a meaningful learning experience and all students would recommend both experiences to other students. These findings suggest there is merit in both high fidelity and low fidelity simulation as a teaching and learning approach to foster teamwork among undergraduate nursing, medicine and pharmacy students. However, participation in high fidelity simulation may provide a more realistic opportunity to practice and function as an effective member of the interprofessional health care team.

Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

An Analysis of Digital Forensic Laboratory Development among Malaysia’s Law Enforcement Agencies

Cybercrime is on the rise, and yet many Law Enforcement Agencies (LEAs) in Malaysia have no Digital Forensics Laboratory (DFL) to assist them in the attrition and analysis of digital evidence. From the estimated number of 30 LEAs in Malaysia, sadly, only eight of them owned a DFL. All of the DFLs are concentrated in the capital of Malaysia and none at the state level. LEAs are still depending on the national DFL (CyberSecurity Malaysia) even for simple and straightforward cases. A survey was conducted among LEAs in Malaysia owning a DFL to understand their history of establishing the DFL, the challenges that they faced and the significance of the DFL to their case investigation. The results showed that the while some LEAs faced no challenge in establishing a DFL, some of them took seven to 10 years to do so. The reason was due to the difficulty in convincing their management because of the high costs involved. The results also revealed that with the establishment of a DFL, LEAs were better able to get faster forensic result and to meet agency’s timeline expectation. It is also found that LEAs were also able to get more meaningful forensic results on cases that require niche expertise, compared to sending off cases to the national DFL. Other than that, cases are getting more complex, and hence, a continuous stream of budget for equipment and training is inevitable. The result derived from the study is hoped to be used by other LEAs in justifying to their management the benefits of establishing an in-house DFL.

Adaptive Motion Planning for 6-DOF Robots Based on Trigonometric Functions

Building an appropriate motion model is crucial for trajectory planning of robots and determines the operational quality directly. An adaptive acceleration and deceleration motion planning based on trigonometric functions for the end-effector of 6-DOF robots in Cartesian coordinate system is proposed in this paper. This method not only achieves the smooth translation motion and rotation motion by constructing a continuous jerk model, but also automatically adjusts the parameters of trigonometric functions according to the variable inputs and the kinematic constraints. The results of computer simulation show that this method is correct and effective to achieve the adaptive motion planning for linear trajectories.

Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives

'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).

Contributions of Non-Formal Educational Spaces for the Scientific Literacy of Deaf Students

The school is a social institution that should promote learning situations that remain throughout life. Based on this, the teaching activities promoted in museum spaces can represent an educational strategy that contributes to the learning process in a more meaningful way. This article systematizes a series of elements that guide the use of these spaces for the scientific literacy of deaf students and as experiences of this nature are favorable for the school development through the concept of the circularity. The methodology for the didactic use of these spaces of non-formal education is one of the reflections developed in this study and how such environments can contribute to the learning in the classroom. To develop in the student the idea of ​​association making him create connections with the curricular proposal and notice how the proposed activity is articulated. It is in our interest that the experience lived in the museum be shared collaborating for the construction of a scientific literacy and cultural identity through the research.

An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5

Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.

Design of Smart Urban Lighting by Using Social Sustainability Approach

Creating cities, objects and spaces that are economically, environmentally and socially sustainable and which meet the challenge of social interaction and generation change will be one of the biggest tasks of designers. Social sustainability is about how individuals, communities and societies live with each other and set out to achieve the objectives of development model which they have chosen for themselves. Urban lightning as one of the most important elements of urban furniture that people constantly interact with it in public spaces; can be a significant object for designers. Using intelligence by internet of things for urban lighting makes it more interactive in public environments. It can encourage individuals to carry out appropriate behaviors and provides them the social awareness through new interactions. The greatest strength of this technology is its strong impact on many aspects of everyday life and users' behaviors. The analytical phase of the research is based on a multiple method survey strategy. Smart lighting proposed in this paper is an urban lighting designed on results obtained from a collective point of view about the social sustainability. In this paper, referring to behavioral design methods, the social behaviors of the people has been studied. Data show that people demands for a deeper experience of social participation, safety perception and energy saving with the meaningful use of interactive and colourful lighting effects. By using intelligent technology, some suggestions are provided in the field of future lighting to consider the new forms of social sustainability.

Immunolabeling of TGF-β during Muscle Regeneration

Muscle regeneration after injury (as irradiation) is of great importance. However, the molecular and cellular mechanisms are still unclear. Cytokines are believed to play fundamental role in the different stages of muscle regeneration. They are secreted by many cell populations, but the predominant producers are macrophages and helper T cells. On the other hand, it has been shown that adipose tissue derived stromal/stem cell (ASC) injection could improve muscle regeneration. Stem cells probably induce the coordinated modulations of gene expression in different macrophage cells. Therefore, we investigated the patterns and timing of changes in gene expression of different cytokines occurring upon stem cells loading. Muscle regeneration was studied in an irradiated muscle of minipig animal model in presence or absence of ASC treatment (irradiated and treated with ASCs, IRR+ASC; irradiated not-treated with ASCs, IRR; and non-irradiated no-IRR). We characterized macrophage populations by immunolabeling in the different conditions. In our study, we found mostly M2 and a few M1 macrophages in the IRR+ASC samples. However, only few M2b macrophages were noticed in the IRR muscles. In addition, we found intensive fibrosis in the IRR samples. With in situ hybridization and immunolabeling, we analyzed the cytokine expression of the different macrophages and we showed that M2d macrophage are the most abundant in the IRR+ASC samples. By in situ hybridization, strong expression of the transforming growth factor β (TGF-β) was observed in the IRR+ASC but very week in the IRR samples. But when we analyzed TGF-β level with immunolabeling the expression was very different: many M2 macrophages showed week expression in IRR+ASC and few cells expressing stronger level in IRR muscles. Therefore, we investigated the MMP expressions in the different muscles. Our data showed that the M2 macrophages of the IRR+ASC muscle expressed MMP2 proteins. Our working hypothesis is that MMP2 expression of the M2 macrophages can decrease fibrosis in the IRR+ASC muscle by capturing TGF-β.

A Look at the History of Calligraphy in Decoration of Mosques in Iran: 630-1630 AD

Architecture in Iran has a continuous history from at least 5000 BC to the present, and numerous Iranian pre-Islamic elements have contributed significantly to the formation of Islamic art. At first, decoration was limited to small objects and containers and then progressed in the art of plaster and brickwork. They later applied in architecture as well. The art of gypsum and brickwork, which was prevalent in the form of motifs (animals and plants) in pre-Islam, was used in the aftermath of Islam with the art of calligraphy in decorations. The splendor and beauty of Iranian architecture, especially during the Islamic era, are related to decoration and design. After the invasion of Iran by the Arabs and the introduction of Islam to Iran, the arrival of the Iranian classical architecture significantly changed, and we saw the Arabic calligraphy decoration of the mosques in Iran. The principles of aesthetics in the art of calligraphy in Iran are based precisely on the principles of the beauty of ancient Iranian and Islamic art. On the other hand, after Islam, calligraphy was one of the most important sources of Islamic art in Islam and one of the important features of Islamic culture. First, the calligraphy had no cultural meaning and was only for decoration and beautification, it had the same meaning only in the inscriptions; however, over time, it became meaningful. This article provides a summary of the history of calligraphy in the mosques (from the entrance to Islam until the Safavid period), which cannot ignore the role of the calligraphy in their decorative ideas; and also, the important role that decorative elements play in creating a public space in terms of social and aesthetic performance. This study was conducted using library studies and field studies. The purpose of this study is to show the characteristics of architecture and art of decorations in Iran, especially in the mosque's architecture, which reaches the pinnacle of progress. We will see that religious beliefs and artistic practices are merging and trying to bring a single concept.

Corporate Cautionary Statement: A Genre of Professional Communication

Cautionary statements or disclaimers in corporate annual reports need to be carefully designed because clear cautionary statements may protect a company in the case of legal disputes and may undermine positive impressions. This study compares the language of cautionary statements using two corpora, Sony’s cautionary statement corpus (S-corpus) and Panasonic’s cautionary statement corpus (P-corpus), illustrating the differences and similarities in relation to the use of meaningful cautionary statements and critically analyzing why practitioners use the way. The findings describe the distinct differences between the two companies in the presentation of the risk factors and the way how they make the statements. The word ability is used more for legal protection in S-corpus whereas the word possibility is used more to convey a better impression in P-corpus. The main similarities are identified in the use of lexical words and pronouns, and almost the same wordings for eight years. The findings show how they make the statements unique to the company in the presentation of risk factors, and the characteristics of specific genre of professional communication. Important implications of this study are that more comprehensive approach can be applied in other contexts, and be used by companies to reflect upon their cautionary statements.

The Effect of Information vs. Reasoning Gap Tasks on the Frequency of Conversational Strategies and Accuracy in Speaking among Iranian Intermediate EFL Learners

Speaking skills merit meticulous attention both on the side of the learners and the teachers. In particular, accuracy is a critical component to guarantee the messages to be conveyed through conversation because a wrongful change may adversely alter the content and purpose of the talk. Different types of tasks have served teachers to meet numerous educational objectives. Besides, negotiation of meaning and the use of different strategies have been areas of concern in socio-cultural theories of SLA. Negotiation of meaning is among the conversational processes which have a crucial role in facilitating the understanding and expression of meaning in a given second language. Conversational strategies are used during interaction when there is a breakdown in communication that leads to the interlocutor attempting to remedy the gap through talk. Therefore, this study was an attempt to investigate if there was any significant difference between the effect of reasoning gap tasks and information gap tasks on the frequency of conversational strategies used in negotiation of meaning in classrooms on one hand, and on the accuracy in speaking of Iranian intermediate EFL learners on the other. After a pilot study to check the practicality of the treatments, at the outset of the main study, the Preliminary English Test was administered to ensure the homogeneity of 87 out of 107 participants who attended the intact classes of a 15 session term in one control and two experimental groups. Also, speaking sections of PET were used as pretest and posttest to examine their speaking accuracy. The tests were recorded and transcribed to estimate the percentage of the number of the clauses with no grammatical errors in the total produced clauses to measure the speaking accuracy. In all groups, the grammatical points of accuracy were instructed and the use of conversational strategies was practiced. Then, different kinds of reasoning gap tasks (matchmaking, deciding on the course of action, and working out a time table) and information gap tasks (restoring an incomplete chart, spot the differences, arranging sentences into stories, and guessing game) were manipulated in experimental groups during treatment sessions, and the students were required to practice conversational strategies when doing speaking tasks. The conversations throughout the terms were recorded and transcribed to count the frequency of the conversational strategies used in all groups. The results of statistical analysis demonstrated that applying both the reasoning gap tasks and information gap tasks significantly affected the frequency of conversational strategies through negotiation. In the face of the improvements, the reasoning gap tasks had a more significant impact on encouraging the negotiation of meaning and increasing the number of conversational frequencies every session. The findings also indicated both task types could help learners significantly improve their speaking accuracy. Here, applying the reasoning gap tasks was more effective than the information gap tasks in improving the level of learners’ speaking accuracy.

Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt

Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.

Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Maternal and Child Health Care: A Study among the Rongmeis of Manipur, India

Background: Maternal and child health (MCH) cares are the health services provided to mothers and children. It includes the health promotion, preventive, curative and rehabilitation health care for mothers and children. Materials and method: The present study sample comprises of 208 women within the age range 15-69 years from two remote villages of Tamenglong District in Manipur. They were randomly chosen for assessing their health as well as the child’s health adopting an interview schedule method. Results: The findings of the study revealed that majority (80%) of the women have their first conception in their first year of married life. A decadal change has been observed with regard to the last pregnancy i.e., antenatal check-up, place of delivery as well as the service provider. However, irrespective of age of the women, home delivery is still preferred though very few are locally trained. Pre- and post-delivery resting period vary depending on the busy schedule of the agricultural works as the population under study is basically agriculturist. Postnatal care remains to be traditional as they are strongly associated with cultural beliefs and practices that continue to prevail in the studied community. Breast feeding practices such as colostrums given, initiation of breastfeeding, weaning was all taken into account.  Immunization of children has not reached the expected target owing to a variety of reasons. Maternal health care also includes use of birth control measures. The health status of women would invariably improve if family planning is meaningfully adopted. Only 10.1% of the women adopted the modern birth control implying its deep-rooted value attached to the children. Based on the self-assessment report on their health treatment a good number of the respondents resorted to self-medication even to the extent of buying allopathic medicine without a doctor’s prescription. One important finding from the study is the importance attributed to the traditional health care system which is easily affordable and accessible to the villagers. Conclusion: The overall condition of maternal and child care is way behind till now as no adequate/proper health services are available.