Seismic Response Reduction of Structures using Smart Base Isolation System

In this study, control performance of a smart base isolation system consisting of a friction pendulum system (FPS) and a magnetorheological (MR) damper has been investigated. A fuzzy logic controller (FLC) is used to modulate the MR damper so as to minimize structural acceleration while maintaining acceptable base displacement levels. To this end, a multi-objective optimization scheme is used to optimize parameters of membership functions and find appropriate fuzzy rules. To demonstrate effectiveness of the proposed multi-objective genetic algorithm for FLC, a numerical study of a smart base isolation system is conducted using several historical earthquakes. It is shown that the proposed method can find optimal fuzzy rules and that the optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

Mechanical Characteristics and Modeling of Multiple Trench Friction Pendulum System with Multi-intermediate Sliding Plates

In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing multiple intermediate sliding plates. By means of mathematical formulations, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.