High Resolution Images: Segmenting, Extracting Information and GIS Integration

As the world changes more rapidly, the demand for update information for resource management, environment monitoring, planning are increasing exponentially. Integration of Remote Sensing with GIS technology will significantly promote the ability for addressing these concerns. This paper presents an alternative way of update GIS applications using image processing and high resolution images. We show a method of high-resolution image segmentation using graphs and morphological operations, where a preprocessing step (watershed operation) is required. A morphological process is then applied using the opening and closing operations. After this segmentation we can extract significant cartographic elements such as urban areas, streets or green areas. The result of this segmentation and this extraction is then used to update GIS applications. Some examples are shown using aerial photography.

Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation

In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.

Exponential Stability of Numerical Solutions to Stochastic Age-Dependent Population Equations with Poisson Jumps

The main aim of this paper is to investigate the exponential stability of the Euler method for a stochastic age-dependent population equations with Poisson random measures. It is proved that the Euler scheme is exponentially stable in mean square sense. An example is given for illustration.

Exponential Stability and Periodicity of a Class of Cellular Neural Networks with Time-Varying Delays

The problem of exponential stability and periodicity for a class of cellular neural networks (DCNNs) with time-varying delays is investigated. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions for exponential stability and periodicity are derived via the methods of variation parameters and inequality techniques. These conditions are represented by some blocks of the interconnection matrices. Compared with some previous methods, the method used in this paper does not resort to any Lyapunov function, and the results derived in this paper improve and generalize some earlier criteria established in the literature cited therein. Two examples are discussed to illustrate the main results.

Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart

The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).

The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact

The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.

A Dynamic Programming Model for Maintenance of Electric Distribution System

The paper presents dynamic programming based model as a planning tool for the maintenance of electric power systems. Every distribution component has an exponential age depending reliability function to model the fault risk. In the moment of time when the fault costs exceed the investment costs of the new component the reinvestment of the component should be made. However, in some cases the overhauling of the old component may be more economical than the reinvestment. The comparison between overhauling and reinvestment is made by optimisation process. The goal of the optimisation process is to find the cost minimising maintenance program for electric power distribution system.

Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)

Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.

The Impact of e-Learning and e-Teaching

With the exponential progress of technological development comes a strong sense that events are moving too quickly for our schools and that teachers may be losing control of them in the process. This paper examines the impact of e-learning and e-teaching in universities, from both the student and teacher perspective. In particular, it is shown that e-teachers should focus not only on the technical capacities and functions of IT materials and activities, but must attempt to more fully understand how their e-learners perceive the learning environment. From the e-learner perspective, this paper indicates that simply having IT tools available does not automatically translate into all students becoming effective learners. More evidence-based evaluative research is needed to allow e-learning and e-teaching to reach full potential.

Border Limited Adaptive Subdivision Based On Triangle Meshes

Subdivision is a method to create a smooth surface from a coarse mesh by subdividing the entire mesh. The conventional ways to compute and render surfaces are inconvenient both in terms of memory and computational time as the number of meshes will increase exponentially. An adaptive subdivision is the way to reduce the computational time and memory by subdividing only certain selected areas. In this paper, a new adaptive subdivision method for triangle meshes is introduced. This method defines a new adaptive subdivision rules by considering the properties of each triangle's neighbors and is embedded in a traditional Loop's subdivision. It prevents some undesirable side effects that appear in the conventional adaptive ways. Models that were subdivided by our method are compared with other adaptive subdivision methods