Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Capacity Optimization in Cooperative Cognitive Radio Networks

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

An Approach for the Integration of the Existing Wireless Networks

The demand of high quality services has fueled dimensional research and development in wireless communications and networking. As a result, different wireless technologies like Wireless LAN, CDMA, GSM, UMTS, MANET, Bluetooth and satellite networks etc. have emerged in the last two decades. Future networks capable of carrying multimedia traffic need IP convergence, portability, seamless roaming and scalability among the existing networking technologies without changing the core part of the existing communications networks. To fulfill these goals, the present networking systems are required to work in cooperation to ensure technological independence, seamless roaming, high security and authentication, guaranteed Quality of Services (QoS). In this paper, a conceptual framework for a cooperative network (CN) is proposed for integration of heterogeneous existing networks to meet out the requirements of the next generation wireless networks.

Dual Band Fractal Antenna for Wireless Sensor Network Application

A wireless sensor network (WSN) is a collection of sensor nodes organized into a cooperative network. These nodes communicate through a wireless antenna. Reduction in physical size and multiband operation is an important requirement of WSN antenna. Fractal antenna is used for miniaturization and multiband operation. The self-similar or self-affine and space filling property of fractal geometry increases the effective electrical length of the antenna, reduces the size and make them frequency independent. This paper elaborates on Dual band fractal antenna with Coplanar Waveguide (CPW) feed for WSN. The proposed antenna is designed on a FR4 substrate with the dimension of 27mm x 28.5mm x 1.6mm, resonates at 2.4GHz and 5.2GHz with a return loss less than -10dB. The design and simulation process is carried out using IE3D simulation software. The simulated and measured results are found in good agreement.