Influence of Ambient Condition on Performance of Wet Compression Process

Gas turbine systems with wet compression have a potential for future power generation, since they can offer a high efficiency and a high specific power with a relatively low cost. In this study influence of ambient condition on the performance of the wet compression process is investigated with a non-equilibrium analytical modeling based on droplet evaporation. Transient behaviors of droplet diameter and temperature of mixed air are investigated for various ambient temperatures. Special attention is paid for the effects of ambient temperature, pressure ratio, and water injection ratios on the important wet compression variables including compressor outlet temperature and compression work. Parametric studies show that downing of the ambient temperature leads to lower compressor outlet temperature and consequently lower consumption of compression work even in wet compression processes.

Fast and Accurate Reservoir Modeling: Genetic Algorithm versus DIRECT Method

In this paper, two very different optimization algorithms, Genetic and DIRECT algorithms, are used to history match a bottomhole pressure response for a reservoir with wellbore storage and skin with the best possible analytical model. No initial guesses are available for reservoir parameters. The results show that the matching process is much faster and more accurate for DIRECT method in comparison with Genetic algorithm. It is furthermore concluded that the DIRECT algorithm does not need any initial guesses, whereas Genetic algorithm needs to be tuned according to initial guesses.