Origins of Strict Liability for Abnormally Dangerous Activities in the United States, Rylands v. Fletcher and a General Clause of Strict Liability in the UK

The paper reveals the birth and evolution of the British precedent Rylands v. Fletcher that, once adopted on the other side of the Ocean (in United States), gave rise to a general clause of liability for abnormally dangerous activities recognized by the §20 of the American Restatements of the Law Third, Liability for Physical and Emotional Harm. The main goal of the paper was to analyze the development of the legal doctrine and of the case law posterior to the precedent together with the intent of the British judicature to leapfrog from the traditional rule contained in Rylands v. Fletcher to a general clause similar to that introduced in the United States and recently also on the European level. As it is well known, within the scope of tort law two different initiatives compete with the aim of harmonizing the European laws: European Group on Tort Law with its Principles of European Tort Law (hereinafter PETL) in which article 5:101 sets forth a general clause for strict liability for abnormally dangerous activities and Study Group on European Civil Code with its Common Frame of Reference (CFR) which promotes rather ad hoc model of listing out determined cases of strict liability. Very narrow application scope of the art. 5:101 PETL, restricted only to abnormally dangerous activities, stays in opposition to very broad spectrum of strict liability cases governed by the CFR. The former is a perfect example of a general clause that offers a minimum and basic standard, possibly acceptable also in those countries in which, like in the United Kingdom, this regime of liability is completely marginalized.

Group Learning for the Design of Human Resource Development for Enterprise

In order to understand whether there is a better than the learning function of learning methods and improve the CAD Courses for enterprise’s design human resource development, this research is applied in learning practical learning computer graphics software. In this study, Revit building information model for learning content, design of two different modes of learning curriculum to learning, learning functions, respectively, and project learning. Via a post-test, questionnaires and student interviews, etc., to study the effectiveness of a comparative analysis of two different modes of learning. Students participate in a period of three weeks after a total of nine-hour course, and finally written and hands-on test. In addition, fill in the questionnaire response by the student learning, a total of fifteen questionnaire title, problem type into the base operating software, application software and software-based concept features three directions. In addition to the questionnaire, and participants were invited to two different learning methods to conduct interviews to learn more about learning students the idea of two different modes. The study found that the ad hoc short-term courses in learning, better learning outcomes. On the other hand, functional style for the whole course students are more satisfied, and the ad hoc style student is difficult to accept the ad hoc style of learning.

A Survey on Opportunistic Routing in Mobile Ad Hoc Networks

Opportunistic Routing (OR) increases the transmission reliability and network throughput. Traditional routing protocols preselects one or more predetermined nodes before transmission starts and uses a predetermined neighbor to forward a packet in each hop. The opportunistic routing overcomes the drawback of unreliable wireless transmission by broadcasting one transmission can be overheard by manifold neighbors. The first cooperation-optimal protocol for Multirate OR (COMO) used to achieve social efficiency and prevent the selfish behavior of the nodes. The novel link-correlation-aware OR improves the performance by exploiting the miscellaneous low correlated forward links. Context aware Adaptive OR (CAOR) uses active suppression mechanism to reduce packet duplication. The Context-aware OR (COR) can provide efficient routing in mobile networks. By using Cooperative Opportunistic Routing in Mobile Ad hoc Networks (CORMAN), the problem of opportunistic data transfer can be tackled. While comparing to all the protocols, COMO is the best as it achieves social efficiency and prevents the selfish behavior of the nodes.

Adaptive Routing Protocol for Dynamic Wireless Sensor Networks

The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several subnetworks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.

An Enhanced Associativity Based Routing with Fuzzy Based Trust to Mitigate Network Attacks

Mobile Ad Hoc Networks (MANETs) is a collection of mobile devices forming a communication network without infrastructure. MANET is vulnerable to security threats due to network’s limited security, dynamic topology, scalability and the lack of central management. The Quality of Service (QoS) routing in such networks is limited by network breakage caused by node mobility or nodes energy depletions. The impact of node mobility on trust establishment is considered and its use to propagate trust through a network is investigated in this paper. This work proposes an enhanced Associativity Based Routing (ABR) with Fuzzy based Trust (Fuzzy- ABR) routing protocol for MANET to improve QoS and to mitigate network attacks.

Back Bone Node Based Black Hole Detection Mechanism in Mobile Ad Hoc Networks

Mobile Ad hoc Network is a set of self-governing nodes which communicate through wireless links. Dynamic topology MANETs makes routing a challenging task. Various routing protocols are there, but due to various fundamental characteristic open medium, changing topology, distributed collaboration and constrained capability, these protocols are tend to various types of security attacks. Black hole is one among them. In this attack, malicious node represents itself as having the shortest path to the destination but that path not even exists. In this paper, we aim to develop a routing protocol for detection and prevention of black hole attack by modifying AODV routing protocol. This protocol is able to detect and prevent the black hole attack. Simulation is done using NS-2, which shows the improvement in network performance.

Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks

Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.

Parameters Used in Gateway Selection Schemes for Internet Connected MANETs: A Review

The wide use of the Internet-based applications bring many challenges to the researchers to guarantee the continuity of the connections needed by the mobile hosts and provide reliable Internet access for them. One of proposed solutions by Internet Engineering Task Force (IETF) is to connect the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) with Internet structure. This connection is done through multi-interface devices known as Internet Gateways. Many issues are related to this connection like gateway discovery, handoff, address auto-configuration and selecting the optimum gateway when multiple gateways exist. Many studies were done proposing gateway selection schemes with a single selection criterion or weighted multiple criteria. In this research, a review of some of these schemes is done showing the differences, the features, the challenges and the drawbacks of each of them.

Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks

Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algorithms leads to the efficient transmission of data in mobile ad hoc networks. The algorithms that are inspired by the principles of naturally-distributed/collective behavior of social colonies have shown excellence in dealing with complex optimization problems. Thus some of the bio-inspired metaheuristic algorithms help to increase the efficiency of routing in ad hoc networks. This survey work presents the overview of bio-inspired metaheuristic algorithms which support the efficiency of routing in mobile ad hoc networks.

Optimization of Bit Error Rate and Power of Ad-hoc Networks Using Genetic Algorithm

The ad hoc networks are the future of wireless technology as everyone wants fast and accurate error free information so keeping this in mind Bit Error Rate (BER) and power is optimized in this research paper by using the Genetic Algorithm (GA). The digital modulation techniques used for this paper are Binary Phase Shift Keying (BPSK), M-ary Phase Shift Keying (M-ary PSK), and Quadrature Amplitude Modulation (QAM). This work is implemented on Wireless Ad Hoc Networks (WLAN). Then it is analyze which modulation technique is performing well to optimize the BER and power of WLAN.

A Comparative Study of Novel Opportunistic Routing Protocols in Mobile Ad Hoc Networks

Opportunistic routing is used, where the network has the features like dynamic topology changes and intermittent network connectivity. In Delay tolerant network or Disruption tolerant network opportunistic forwarding technique is widely used. The key idea of opportunistic routing is selecting forwarding nodes to forward data packets and coordination among these nodes to avoid duplicate transmissions. This paper gives the analysis of pros and cons of various opportunistic routing techniques used in MANET.

Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios

Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.

Vehicular Ad Hoc Network

A Vehicular Ad-Hoc Network (VANET) is a mobile Ad-Hoc Network that provides connectivity moving device to fixed equipments. Such type of device is equipped with vehicle provides safety for the passengers. In the recent research areas of traffic management there observed the wide scope of design of new methodology of extension of wireless sensor networks and ad-hoc network principal for development of VANET technology. This paper provides the wide research view of the VANET and MANET concept for the researchers to contribute the better optimization technique for the development of effective and fast atomization technique for the large size of data exchange in this complex networks.

Survey on Energy Efficient Routing Protocols in Mobile Ad Hoc Networks

Mobile Ad-Hoc Network (MANET) is a network without infrastructure dynamically formed by autonomous system of mobile nodes that are connected via wireless links. Mobile nodes communicate with each other on the fly. In this network each node also acts as a router. The battery power and the bandwidth are very scarce resources in this network. The network lifetime and connectivity of nodes depend on battery power. Therefore, energy is a valuable constraint which should be efficiently used. In this paper we survey various energy efficient routing protocols. The energy efficient routing protocols are classified on the basis of approaches they use to minimize the energy consumption. The purpose of this paper is to facilitate the research work and combine the existing solution and to develop a more energy efficient routing mechanism.

Factorial Design Analysis for Quality of Video on MANET

The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyze MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.

Broadcasting Mechanism with Less Flooding Packets by Optimally Constructing Forwarding and Non-Forwarding Nodes in Mobile Ad Hoc Networks

The conventional routing protocol designed for MANET fail to handle dynamic movement and self-starting behavior of the node effectively. Every node in MANET is considered as forward as well receiver node and all of them participate in routing the packet from source to the destination. While the interconnection topology is highly dynamic, the performance of the most of the routing protocol is not encouraging. In this paper, a reliable broadcast approach for MANET is proposed for improving the transmission rate. The MANET is considered with asymmetric characteristics and the properties of the source and destination nodes are different. The non-forwarding node list is generated with a downstream node and they do not participate in the routing. While the forwarding and non-forwarding node is constructed in a conventional way, the number of nodes in non-forwarding list is more and increases the load. In this work, we construct the forwarding and non-forwarding node optimally so that the flooding and broadcasting is reduced to certain extent. The forwarded packet is considered as acknowledgements and the non-forwarding nodes explicitly send the acknowledgements to the source. The performance of the proposed approach is evaluated in NS2 environment. Since the proposed approach reduces the flooding, we have considered functionality of the proposed approach with AODV variants. The effect of network density on the overhead and collision rate is considered for performance evaluation. The performance is compared with the AODV variants found that the proposed approach outperforms all the variants.

A Comprehensive Survey and Comparative Analysis of Black Hole Attack in Mobile Ad Hoc Network

A Mobile Ad-hoc Network (MANET) is a self managing network consists of versatile nodes that are capable of communicating with each other without having any fixed infrastructure. These nodes may be routers and/or hosts. Due to this dynamic nature of the network, routing protocols are vulnerable to various kinds of attacks. The black hole attack is one of the conspicuous security threats in MANETs. As the route discovery process is obligatory and customary, attackers make use of this loophole to get success in their motives to destruct the network. In Black hole attack the packet is redirected to a node that actually does not exist in the network. Many researchers have proposed different techniques to detect and prevent this type of attack. In this paper, we have analyzed various routing protocols in this context. Further we have shown a critical comparison among various protocols. We have shown various routing metrics are required proper and significant analysis of the protocol.

Per Flow Packet Scheduling Scheme to Improve the End-to-End Fairness in Mobile Ad Hoc Wireless Network

Various fairness models and criteria proposed by academia and industries for wired networks can be applied for ad hoc wireless network. The end-to-end fairness in an ad hoc wireless network is a challenging task compared to wired networks, which has not been addressed effectively. Most of the traffic in an ad hoc network are transport layer flows and thus the fairness of transport layer flows has attracted the interest of the researchers. The factors such as MAC protocol, routing protocol, the length of a route, buffer size, active queue management algorithm and the congestion control algorithms affects the fairness of transport layer flows. In this paper, we have considered the rate of data transmission, the queue management and packet scheduling technique. The ad hoc network is dynamic in nature due to various parameters such as transmission of control packets, multihop nature of forwarding packets, changes in source and destination nodes, changes in the routing path influences determining throughput and fairness among the concurrent flows. In addition, the effect of interaction between the protocol in the data link and transport layers has also plays a role in determining the rate of the data transmission. We maintain queue for each flow and the delay information of each flow is maintained accordingly. The pre-processing of flow is done up to the network layer only. The source and destination address information is used for separating the flow and the transport layer information is not used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and the transport layer information is used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on not mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and MC-MLAS and the performance of the proposed approach is encouraging.

Providing Emotional Support to Children under Long-Term Health Treatments

Patients under health treatments that involve long  stays at a hospital or health center (e.g. cancer, organ transplants and  severe burns), tend to get bored or depressed because of the lack of  social interaction with family and friends. Such a situation also  affects the evolution and effectiveness of their treatments. In many  cases, the solution to this problem involves extra challenges, since  many patients need to rest quietly (or remain in bed) to their being  contagious. Considering the weak health condition in which usually  are these kinds, keeping them motivated and quiet represents an  important challenge for nurses and caregivers. This article presents a  mobile ubiquitous game called MagicRace, which allows hospitalized  kinds to interact socially with one another without putting to risk  their sensitive health conditions. The game does not require a  communication infrastructure at the hospital, but instead, it uses a  mobile ad hoc network composed of the handheld devices used by  the kids to play. The usability and performance of this application  was tested in two different sessions. The preliminary results show  that users experienced positive feelings from this experience.  

An Anonymity-Based Secure On-Demand Routing for Mobile Ad Hoc Networks

Privacy and Security have emerged as an important research issue in Mobile Ad Hoc Networks (MANET) due to its unique nature such as scarce of resources and absence of centralized authority. There are number of protocols have been proposed to provide privacy and security for data communication in an adverse environment, but those protocols are compromised in many ways by the attackers. The concept of anonymity (in terms of unlinkability and unobservability) and pseudonymity has been introduced in this paper to ensure privacy and security. In this paper, a Secure Onion Throat (SOT) protocol is proposed to provide complete anonymity in an adverse environment. The SOT protocol is designed based on the combination of group signature and onion routing with ID-based encryption for route discovery. The security analysis demonstrates the performance of SOT protocol against all categories of attacks. The simulation results ensure the necessity and importance of the proposed SOT protocol in achieving such anonymity.