Adaptive Routing Protocol for Dynamic Wireless Sensor Networks

The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several subnetworks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.

Allocation of Mobile Units in an Urban Emergency Service System

In an urban area the location allocation of emergency services mobile units, such as ambulances, police patrol cars must be designed so as to achieve a prompt response to demand locations. In this paper the partition of a given urban network into distinct sub-networks is performed such that the vertices in each component are close and simultaneously the sums of the corresponding population in the sub-networks are almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.

Signalling Cost Analysis of PDE-NEMO

A Personal Distributed Environment (PDE) is an example of an IP-based system architecture designed for future mobile communications. In a single PDE, there exist several Subnetworks hosting devices located across the infrastructure, which will inter-work with one another through the coordination of a Device Management Entity (DME). Some of these Sub-networks are fixed and some are mobile. In order to support Mobile Sub-networks mobility in the PDE, the PDE-NEMO protocol was proposed. This paper discussed the signalling cost analysis of PDE-NEMO by use of a detailed simulation model. The paper started with the introduction of the protocol, followed by the experiments and results and then followed by discussions.