Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

An Ontology Model for Systems Engineering Derived from ISO/IEC/IEEE 15288: 2015: Systems and Software Engineering - System Life Cycle Processes

ISO/IEC/IEEE 15288: 2015, Systems and Software Engineering - System Life Cycle Processes is an international standard that provides generic top-level process descriptions to support systems engineering (SE). However, the processes defined in the standard needs improvement to lift integrity and consistency. The goal of this research is to explore the way by building an ontology model for the SE standard to manage the knowledge of SE. The ontology model gives a whole picture of the SE knowledge domain by building connections between SE concepts. Moreover, it creates a hierarchical classification of the concepts to fulfil different requirements of displaying and analysing SE knowledge.

Promoting Innovation Pedagogy in a Capacity Building Project in Indonesia

This study presents a project that tests and adjusts active European learning and teaching methods in Indonesian universities to increase their external impact on enterprises and other organizations; it also assesses the implementation of the Erasmus+ projects funded by the European Union. The project is based on the approach of innovation pedagogy that responds to regional development needs and integrates applied research and development projects into education to create capabilities for students to participate in development work after graduation. The assessment of the Erasmus+ project resulted in many improvements that can be made to achieve higher quality and innovativeness. The results of this study are useful for those who want to improve the applied research and development projects of higher education institutions.

Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.

Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process

A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.

Spatial and Temporal Variability of Fog Over the Indo-Gangetic Plains, India

The aim of the paper is to analyze the characteristics of winter fog in terms of its trend and spatial-temporal variability over Indo-Gangetic plains. The study reveals that during last four and half decades (1971-2015), an alarming increasing trend in fog frequency has been observed during the winter months of December and January over the study area. The frequency of fog has increased by 118.4% during the peak winter months of December and January. It has also been observed that on an average central part of IGP has 66.29% fog days followed by west IGP with 41.94% fog days. Further, Empirical Orthogonal Function (EOF) decomposition and Mann-Kendall variation analysis are used to analyze the spatial and temporal patterns of winter fog. The findings have significant implications for the further research of fog over IGP and formulate robust strategies to adapt the fog variability and mitigate its effects. The decision by Delhi Government to implement odd-even scheme to restrict the use of private vehicles in order to reduce pollution and improve quality of air may result in increasing the alarming increasing trend of fog over Delhi and its surrounding areas regions of IGP.

Continuous Wave Interference Effects on Global Position System Signal Quality

Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.

Poststreptococcal Reactive Arthritis in Children: A Serial Case

Infection by group A streptococci (GAS) can trigger an autoantibody that cause a poststreptococcal reactive arthritis (PSRA). Four patients with PSRA aged 10 years to 14 years old with the main complaint of joint pain for five days to 10 days after suffering a fever and sore throat. The joint pain was persistent, additive, and non migratory. All patients revealed an increase in erythrocyte sedimentation rate (ESR) and anti-streptolysin O (ASLO), but the chest x-ray, electrocardiography, and echocardiography were normal. Bone imaging showed no destruction on the affected joint. Jones Criteria were not fulfilled in all patients. Erythromycin and ibuprofen were given in all patients and an improvement was shown. Erythromycin was continued for one year and routine controls were conducted for cardiac evaluation. The prognosis of all the patients was good.

Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems

This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was found to have a strong stabilizing effect on the ADH from Ralstonia sp. (E. coli/ RasADH). In the case of organic solvents, it was observed that the best conversions into the alcohols were achieved with DMSO and hexane. It was also observed that temperature decreased the ability of the enzyme to convert the substrates into the products and also affected the selectivity. In addition to that, the recycling of DES up to three times gave good conversions and enantiomeric excess results and glycerol showed a positive effect in the stability of various ADHs. Using RasADH, a good conversion and enantiomeric excess into the S-alcohol were obtained. It was found that an enhancement of the temperature disabled the stabilizing effect of glycerol and decreased the stereoselectivity of the enzyme. However, for other ADHs a temperature increase had an opposite positive effect, especially with ADH-T from Thermoanaerobium sp. One of the objectives of this study was to see the effect of cofactors such as NAD(P) on the biocatlysis activities of ADHs.

Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Online Electric Current Based Diagnosis of Stator Faults on Squirrel Cage Induction Motors

In the present paper, five electric current based methods to analyze electric faults on the stator of induction motors (IM) are used and compared. The analysis tries to extend the application of the multiple reference frames diagnosis technique. An eccentricity indicator is presented to improve the application of the Park’s Vector Approach technique. Most of the fault indicators are validated and some others revised, agree with the technical literatures and published results. A tri-phase 3hp squirrel cage IM, especially modified to establish different fault levels, is used for validation purposes.

Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages

Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.

Multi-Objective Optimization Contingent on Subcarrier-Wise Beamforming for Multiuser MIMO-OFDM Interference Channels

We address the problem of interference over all the channels in multiuser MIMO-OFDM systems. This paper contributes three beamforming strategies designed for multiuser multiple-input and multiple-output by way of orthogonal frequency division multiplexing, in which the transmit and receive beamformers are acquired repetitious by secure-form stages. In the principal case, the transmit (TX) beamformers remain fixed then the receive (RX) beamformers are computed. This eradicates one interference span for every user by means of extruding the transmit beamformers into a null space of relevant channels. Formerly, by gratifying the orthogonality condition to exclude the residual interferences in RX beamformer for every user is done by maximizing the signal-to-noise ratio (SNR). The second case comprises mutually optimizing the TX and RX beamformers from controlled SNR maximization. The outcomes of first case is used here. The third case also includes combined optimization of TX-RX beamformers; however, uses the both controlled SNR and signal-to-interference-plus-noise ratio maximization (SINR). By the standardized channel model for IEEE 802.11n, the proposed simulation experiments offer rapid beamforming and enhanced error performance.

Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Application of Systems Engineering Tools and Methods to Improve Healthcare Delivery Inside the Emergency Department of a Mid-Size Hospital

Emergency department (ED) is considered as a complex system of interacting entities: patients, human resources, software and hardware systems, interfaces, and other systems. This paper represents a research for implementing a detailed Systems Engineering (SE) approach in a mid-size hospital in central Indiana. This methodology will be applied by “The Initiative for Product Lifecycle Innovation (IPLI)” institution at Indiana University to study and solve the crowding problem with the aim of increasing throughput of patients and enhance their treatment experience; therefore, the nature of crowding problem needs to be investigated with all other problems that leads to it. The presented SE methods are workflow analysis and systems modeling where SE tools such as Microsoft Visio are used to construct a group of system-level diagrams that demonstrate: patient’s workflow, documentation and communication flow, data systems, human resources workflow and requirements, leadership involved, and integration between ER different systems. Finally, the ultimate goal will be managing the process through implementation of an executable model using commercialized software tools, which will identify bottlenecks, improve documentation flow, and help make the process faster.

Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving

Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.

The Applications of Four Fingers Theory: The Proof of 66 Acupoints under the Human Elbow and Knee

Through experiences of clinical practices, it is discovered that locations on the body at a level of four fingerbreadth above and below the joints are the points at which muscles connect to tendons, and since the muscles and tendons possess opposite characteristics, muscles are full of blood but lack qi, while tendons are full of qi but lack blood, these points on our body become easily blocked. It is proposed that through doing acupuncture or creating localized pressure to the areas four fingerbreadths above and below our joints, with an elastic bandage, we could help the energy, also known as qi, to flow smoothly in our body and further improve our health. Based on the Four Fingers Theory, we understand that human height is 22 four fingerbreadths. In addition, qi and blood travel through 24 meridians, 50 times each day, and they flow through 6 cun with every human breath. We can also understand the average number of human heartbeats is 75 times per minute. And the function of qi-blood circulation system in Traditional Chinese Medicine is the same as the blood circulation in Western Medical Science. Informed by Four Fingers Theory, this study further examined its applications in acupuncture practices. The research question is how Four Fingers Theory proves what has been mentioned in Nei Jing that there are 66 acupoints under a human’s elbow and knee. In responding to the research question, there are 66 acupoints under a human’s elbow and knee. Four Fingers Theory facilitated the creation of the acupuncture naming and teaching system. It is expected to serve as an approachable and effective way to deliver knowledge of acupuncture to the public worldwide.

The Process of Crisis: Model of Its Development in the Organization

The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.

Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.