Modeling and Analysis of SVPWM Based Dynamic Voltage Restorer

In this paper the modeling and analysis of Space Vector Pulse Width Modulation (SVPWM) based Dynamic Voltage Restorer (DVR) using PSCAD/EMTDC software will be presented in details. The simulation includes full modeling of the SVPWM technique used to control the DVR inverter. A test power system composed of three phase voltage source, sag generator, DVR and three phase resistive load is used to demonstrate restoration capability of the DVR. The simulation results of the presented DVR proved excellent voltage sag mitigation to protect sensitive loads.

Struggles for Integration of the Technologies into Learning Environment in Turkey

Primary studies are being carried out in Turkey for expanding information and communication technologies (ICT) aided instruction activities. Subject of the present study is to identify whether those studies achieved their goals in the application. Information technologies (IT) formative teachers in the primary schools, and academicians in the faculties of education were interviewed to investigate the process and results of implementing computer-aided instruction methods whose basis is strengthened in theory. Analysis of the results gained from two separate surveys demonstrated that capability of the teachers in elementary education institutions for carrying into effect computer-aided instruction and technical infrastructure has not been established for computer-aided instruction practices yet. Prospective teachers must be well-equipped in ICT to duly fulfill requirements of modern education and also must be self-confident. Finally, scope and intensity of the courses given in connection with teaching of the ICT in faculties of education needs to be revised.

Durability of LDPE Geomembrane within Sealing System of MSW (Landfill)

Analyse of locally manufactured Low Density Polyethylene (LDPE) durability, used within lining systems at bottom of Municipal Solid Waste (landfill), is done in the present work. For this end, short and middle time creep behavior under tension of the analyzed material is carried out. The locally manufactured material is tested and compared to the European one (LDPE-CE). Both materials was tested in 03 various mediums: ambient and two aggressive (salty water and foam water), using three specimens in each case. A testing campaign is carried out using an especially designed and achieved testing bench. Moreover, characterisation tests were carried out to evaluate the medium effect on the mechanical properties of the tested material (LDPE). Furthermore, experimental results have been used to establish a law regression which can be used to predict creep behaviour of the analyzed material. As a result, the analyzed LDPE material has showed a good stability in different ambient and aggressive mediums; as well, locally manufactured LDPE seems more flexible, compared with the European one. This makes it more useful to the desired application.

Prevention of Biofilm Formation in Urinary Catheter by Coating Enzymes/ Gentamycin/ EDTA

Urinary Tract Infections (UTI) account for an estimated 25-40% nosocomial infection, out of which 90% are associated with urinary catheter, called Catheter associated urinary tract infection (CAUTI). The microbial populations within CAUTI frequently develop as biofilms. In the present study, microbial contamination of indwelling urinary catheters was investigated. Biofilm forming ability of the isolates was determined by tissue culture plate method. Prevention of biofilm formation in the urinary catheter by Pseudomonas aeruginosa was also determined by coating the catheter with some enzymes, gentamycin and EDTA. It was found that 64% of the urinary catheters get contaminated during the course of catheterization. Of the total 6 isolates, biofilm formation was seen in 100% Pseudomonas aeruginosa and E. coli, 90% in Enterococci, 80% in Klebsiella and 66% in S. aureus. It was noted that the biofilm production by Pseudomonas was prolonged by 7 days in amylase, 8 days in protease, 6 days in lysozyme, 7days in gentamycin and 5 days in EDTA treated catheter.

An Ant Colony Optimization for Dynamic JobScheduling in Grid Environment

Grid computing is growing rapidly in the distributed heterogeneous systems for utilizing and sharing large-scale resources to solve complex scientific problems. Scheduling is the most recent topic used to achieve high performance in grid environments. It aims to find a suitable allocation of resources for each job. A typical problem which arises during this task is the decision of scheduling. It is about an effective utilization of processor to minimize tardiness time of a job, when it is being scheduled. This paper, therefore, addresses the problem by developing a general framework of grid scheduling using dynamic information and an ant colony optimization algorithm to improve the decision of scheduling. The performance of various dispatching rules such as First Come First Served (FCFS), Earliest Due Date (EDD), Earliest Release Date (ERD), and an Ant Colony Optimization (ACO) are compared. Moreover, the benefit of using an Ant Colony Optimization for performance improvement of the grid Scheduling is also discussed. It is found that the scheduling system using an Ant Colony Optimization algorithm can efficiently and effectively allocate jobs to proper resources.

Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Adsorption of Methylene Blue from Aqueous Solution on the Surface of Znapso-34 Nanoporous Material

The effects of equilibrium time, solution pH, and sorption temperature of cationic methylene blue (MB) adsorption on nanoporous metallosilicoaluminophosphate ZnAPSO-34 was studied using a batch equilibration method. UV–VIS spectroscopy was used to obtain the adsorption isotherms at 20° C. The optimum period for adsorption was 300 min. However, MB removal increased from 81,82 % to 94,81 %. The equilibrium adsorption data was analyzed by using Langmuir, Freundlich and Temkin isotherm models. Langmuir isotherm was found to be the better-fitting model and the process followed pseudo second–order kinetics. The results showed that ZnAPSO-34 could be employed as an effective material and could be an attractive alternative for the removal of dyes and colors from aqueous solutions.

Edge-end Pixel Extraction for Edge-based Image Segmentation

Extraction of edge-end-pixels is an important step for the edge linking process to achieve edge-based image segmentation. This paper presents an algorithm to extract edge-end pixels together with their directional sensitivities as an augmentation to the currently available mathematical models. The algorithm is implemented in the Java environment because of its inherent compatibility with web interfaces since its main use is envisaged to be for remote image analysis on a virtual instrumentation platform.

Utilizing Virtual Worlds in Education: The Implications for Practice

Multi User Virtual Worlds are becoming a valuable educational tool. Learning experiences within these worlds focus on discovery and active experiences that both engage students and motivate them to explore new concepts. As educators, we need to explore these environments to determine how they can most effectively be used in our instructional practices. This paper explores the current application of virtual worlds to identify meaningful educational strategies that are being used to engage students and enhance teaching and learning.

The Effect of Ultrasonic Vibration of Workpiece in Electrical Discharge Machining of AISIH13 Tool Steel

In the present work, a study has been made on the combination of the electrical discharge machining (EDM) with ultrasonic vibrations to improve the machining efficiency. In experiments the graphite used as tool electrode and material of workpiece was AISIH13 tool steel. The parameters such as discharge peak current and pulse duration were changed to explore their effect on the material removal rate (MRR), relative tool wear ratio (TWR) and surface roughness. From the experimental result it can be seen that ultrasonic vibration of the workpiece can significantly reduces the inactive pulses and improves the stability of process. It was found that ultrasonic assisted EDM (US-EDM) is effective in attaining a high material removal rate (MRR) in finishing regime.

Pruning Method of Belief Decision Trees

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.

Autonomous Control of Multiple Mobile Manipulators

This paper considers the autonomous navigation problem of multiple n-link nonholonomic mobile manipulators within an obstacle-ridden environment. We present a set of nonlinear acceleration controllers, derived from the Lyapunov-based control scheme, which generates collision-free trajectories of the mobile manipulators from initial configurations to final configurations in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulators with results through computer simulations of an interesting scenario.

Detection and Pose Estimation of People in Images

Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.

Formation of (Ga,Mn)N Dilute Magnetic Semiconductor by Manganese Ion Implantation

Un-doped GaN film of thickness 1.90 mm, grown on sapphire substrate were uniformly implanted with 325 keV Mn+ ions for various fluences varying from 1.75 x 1015 - 2.0 x 1016 ions cm-2 at 3500 C substrate temperature. The structural, morphological and magnetic properties of Mn ion implanted gallium nitride samples were studied using XRD, AFM and SQUID techniques. XRD of the sample implanted with various ion fluences showed the presence of different magnetic phases of Ga3Mn, Ga0.6Mn0.4 and Mn4N. However, the compositions of these phases were found to be depended on the ion fluence. AFM images of non-implanted sample showed micrograph with rms surface roughness 2.17 nm. Whereas samples implanted with the various fluences showed the presence of nano clusters on the surface of GaN. The shape, size and density of the clusters were found to vary with respect to ion fluence. Magnetic moment versus applied field curves of the samples implanted with various fluences exhibit the hysteresis loops. The Curie temperature estimated from zero field cooled and field cooled curves for the samples implanted with the fluence of 1.75 x 1015, 1.5 x 1016 and 2.0 x 1016 ions cm-2 was found to be 309 K, 342 K and 350 K respectively.

Panoramic Sensor Based Blind Spot Accident Prevention System

There are many automotive accidents due to blind spots and driver inattentiveness. Blind spot is the area that is invisible to the driver's viewpoint without head rotation. Several methods are available for assisting the drivers. Simplest methods are — rear mirrors and wide-angle lenses. But, these methods have a disadvantage of the requirement for human assistance. So, the accuracy of these devices depends on driver. Another approach called an automated approach that makes use of sensors such as sonar or radar. These sensors are used to gather range information. The range information will be processed and used for detecting the collision. The disadvantage of this system is — low angular resolution and limited sensing volumes. This paper is a panoramic sensor based automotive vehicle monitoring..

Structural Characteristics of Three-Dimensional Random Packing of Aggregates with Wide Size Distribution

The mechanical properties of granular solids are dependent on the flow of stresses from one particle to another through inter-particle contact. Although some experimental methods have been used to study the inter-particle contacts in the past, preliminary work with these techniques indicated that they do not have the necessary resolution to distinguish between those contacts that transmit the load and those that do not, especially for systems with a wide distribution of particle sizes. In this research, computer simulations are used to study the nature and distribution of contacts in a compact with wide particle size distribution, representative of aggregate size distribution used in asphalt pavement construction. The packing fraction, the mean number of contacts and the distribution of contacts were studied for different scenarios. A methodology to distinguish and compute the fraction of load-bearing particles and the fraction of space-filling particles (particles that do not transmit any force) is needed for further investigation.

Analysis of Metallothionein Gene MT1A (rs11076161) and MT2A (rs10636) Polymorphisms as a Molecular Marker in Type 2 Diabetes Mellitus among Malay Population

Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder that characterized by the presence of high glucose in blood that cause from insulin resistance and insufficiency due to deterioration β-cell Langerhans functions. T2DM is commonly caused by the combination of inherited genetic variations as well as our own lifestyle. Metallothionein (MT) is a known cysteine-rich protein responsible in helping zinc homeostasis which is important in insulin signaling and secretion as well as protection our body from reactive oxygen species (ROS). MT scavenged ROS and free radicals in our body happen to be one of the reasons of T2DM and its complications. The objective of this study was to investigate the association of MT1A and MT2A polymorphisms between T2DM and control subjects among Malay populations. This study involved 150 T2DM and 120 Healthy individuals of Malay ethnic with mixed genders. The genomic DNA was extracted from buccal cells and amplified for MT1A and MT2A loci; the 347bp and 238bp banding patterns were respectively produced by mean of the Polymerase Chain Reaction (PCR). The PCR products were digested with Mlucl and Tsp451 restriction enzymes respectively and producing fragments lengths of (158/189/347bp) and (103/135/238bp) respectively. The ANOVA test was conducted and it shown that there was a significant difference between diabetic and control subjects for age, BMI, WHR, SBP, FPG, HBA1C, LDL, TG, TC and family history with (P0.05). The genotype frequency for AA, AG and GG of MT1A polymorphisms was 72.7%, 22.7% and 4.7% in cases and 15%, 55% and 30% in control respectively. As for MT2A, genotype frequency of GG, GC and CC was 42.7%, 27.3% and 30% in case and 5%, 40% and 55% for control respectively. Both polymorphisms show significant difference between two investigated groups with (P=0.000). The Post hoc test was conducted and shows a significant difference between the genotypes within each polymorphism (P=0. 000). The MT1A and MT2A polymorphisms were believed to be the reliable molecular markers to distinguish the T2DM subjects from healthy individuals in Malay populations.

Screen of MicroRNA Targets in Zebrafish Using Heterogeneous Data Sources: A Case Study for Dre-miR-10 and Dre-miR-196

It has been established that microRNAs (miRNAs) play an important role in gene expression by post-transcriptional regulation of messengerRNAs (mRNAs). However, the precise relationships between microRNAs and their target genes in sense of numbers, types and biological relevance remain largely unclear. Dissecting the miRNA-target relationships will render more insights for miRNA targets identification and validation therefore promote the understanding of miRNA function. In miRBase, miRanda is the key algorithm used for target prediction for Zebrafish. This algorithm is high-throughput but brings lots of false positives (noise). Since validation of a large scale of targets through laboratory experiments is very time consuming, several computational methods for miRNA targets validation should be developed. In this paper, we present an integrative method to investigate several aspects of the relationships between miRNAs and their targets with the final purpose of extracting high confident targets from miRanda predicted targets pool. This is achieved by using the techniques ranging from statistical tests to clustering and association rules. Our research focuses on Zebrafish. It was found that validated targets do not necessarily associate with the highest sequence matching. Besides, for some miRNA families, the frequency of their predicted targets is significantly higher in the genomic region nearby their own physical location. Finally, in a case study of dre-miR-10 and dre-miR-196, it was found that the predicted target genes hoxd13a, hoxd11a, hoxd10a and hoxc4a of dre-miR- 10 while hoxa9a, hoxc8a and hoxa13a of dre-miR-196 have similar characteristics as validated target genes and therefore represent high confidence target candidates.

Steam Assisted Gravity Drainage: A Recipe for Success

In this paper, Steam Assisted Gravity Drainage (SAGD) is introduced and its advantages over ordinary steam injection is demonstrated. A simple simulation model is built and three scenarios of natural production, ordinary steam injection, and SAGD are compared in terms of their cumulative oil production and cumulative oil steam ratio. The results show that SAGD can significantly enhance oil production in quite a short period of time. However, since the distance between injection and production wells is short, the oil to steam ratio decreases gradually through time.

Embedded Throughput Improving of Low-rate EDR Packets for Lower-latency

With increasing utilization of the wireless devices in different fields such as medical devices and industrial fields, the paper presents a method for simplify the Bluetooth packets with throughput enhancing. The paper studies a vital issue in wireless communications, which is the throughput of data over wireless networks. In fact, the Bluetooth and ZigBee are a Wireless Personal Area Network (WPAN). With taking these two systems competition consideration, the paper proposes different schemes for improve the throughput of Bluetooth network over a reliable channel. The proposition depends on the Channel Quality Driven Data Rate (CQDDR) rules, which determines the suitable packet in the transmission process according to the channel conditions. The proposed packet is studied over additive White Gaussian Noise (AWGN) and fading channels. The Experimental results reveal the capability of extension of the PL length by 8, 16, 24 bytes for classic and EDR packets, respectively. Also, the proposed method is suitable for the low throughput Bluetooth.