Underwater Interaction of 1064 nm Laser Radiation with Metal Target

Dynamics of laser radiation – metal target interaction in water at 1064 nm by applying Mach-Zehnder interference technique was studied. The mechanism of generating the well developed regime of evaporation of a metal surface and a spherical shock wave in water is proposed. Critical intensities of the NIR for the well developed evaporation of silver and gold targets were determined. Dynamics of shock waves was investigated for earlier (dozens) and later (hundreds) nanoseconds of time. Transparent expanding plasma-vapor-compressed water object was visualized and measured. The thickness of compressed layer of water and pressures behind the front of a shock wave for later time delays were obtained from the optical treatment of interferograms.

Mixed Convection Boundary Layer Flow from a Vertical Cone in a Porous Medium Filled with a Nanofluid

The steady mixed convection boundary layer flow from a vertical cone in a porous medium filled with a nanofluid is numerically investigated using different types of nanoparticles as Cu (copper), Al2O3 (alumina) and TiO2 (titania). The boundary value problem is solved by using the shooting technique by reducing it into an ordinary differential equation. Results of interest for the local Nusselt number with various values of the constant mixed convection parameter and nanoparticle volume fraction parameter are evaluated. It is found that dual solutions exist for a certain range of mixed convection parameter.

Tuning of Thermal FEA Using Krylov Parametric MOR for Subsea Application

A dead leg is a typical subsea production system component. CFD is required to model heat transfer within the dead leg. Unfortunately its solution is time demanding and thus not suitable for fast prediction or repeated simulations. Therefore there is a need to create a thermal FEA model, mimicking the heat flows and temperatures seen in CFD cool down simulations. This paper describes the conventional way of tuning and a new automated way using parametric model order reduction (PMOR) together with an optimization algorithm. The tuned FE analyses replicate the steady state CFD parameters within a maximum error in heat flow of 6 % and 3 % using manual and PMOR method respectively. During cool down, the relative error of the tuned FEA models with respect to temperature is below 5% comparing to the CFD. In addition, the PMOR method obtained the correct FEA setup five times faster than the manually tuned FEA.

Increase of Peroxidase Activity of Haptoglobin (2-2)-Hemoglobin at Pathologic Temperature and Presence of Antibiotics

Free Hemoglobin promotes the accumulation of hydroxyl radicals by the heme iron, which can react with endogenous hydrogen peroxide to produce free radicals which may cause severe oxidative cell damage. Haptoglobin binds to Hemoglobin strongly and Haptoglobin-Hemoglobin binding is irreversible. Peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex was assayed by following increase of absorption of produced tetraguaiacol as the second substrate of Haptoglobin-Hemoglobin complex at 470 nm and 42°C by UV-Vis spectrophotometer. The results have shown that peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex is modulated via homotropic effect of hydrogen peroxide as allostric substrate. On the other hand antioxidant property of Haptoglobin(2- 2)-Hemoglobin was increased via heterotropic effect of the two drugs (especially ampicillin) on peroxidase activity of the complex. Both drugs also have mild effect on quality of homotropic property of peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex. Therefore, in vitro studies show that the two drugs may help Hp-Hb complex to remove hydrogen peroxide from serum at pathologic temperature ature (42 C).

A Metric-Set and Model Suggestion for Better Software Project Cost Estimation

Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with success

Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory

One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.

Attacks and Counter Measures in BST Overlay Structure of Peer-To-Peer System

There are various overlay structures that provide efficient and scalable solutions for point and range query in a peer-topeer network. Overlay structure based on m-Binary Search Tree (BST) is one such popular technique. It deals with the division of the tree into different key intervals and then assigning the key intervals to a BST. The popularity of the BST makes this overlay structure vulnerable to different kinds of attacks. Here we present four such possible attacks namely index poisoning attack, eclipse attack, pollution attack and syn flooding attack. The functionality of BST is affected by these attacks. We also provide different security techniques that can be applied against these attacks.

An Approach for Blind Source Separation using the Sliding DFT and Time Domain Independent Component Analysis

''Cocktail party problem'' is well known as one of the human auditory abilities. We can recognize the specific sound that we want to listen by this ability even if a lot of undesirable sounds or noises are mixed. Blind source separation (BSS) based on independent component analysis (ICA) is one of the methods by which we can separate only a special signal from their mixed signals with simple hypothesis. In this paper, we propose an online approach for blind source separation using the sliding DFT and the time domain independent component analysis. The proposed method can reduce calculation complexity in comparison with conventional methods, and can be applied to parallel processing by using digital signal processors (DSPs) and so on. We evaluate this method and show its availability.

Lateral Pressure in Squat Silos under Eccentric Discharge

The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.

Understanding E-Learning Satisfaction in the Context of University Teachers

The present study was designed to test the influence of confirmed expectations, perceived usefulness and perceived competence on e-learning satisfaction among university teachers. A questionnaire was completed by 125 university teachers from 12 different universities in Norway. We found that 51% of the variance in university teachers- satisfaction with e-learning could be explained by the three proposed antecedents. Perceived usefulness seems to be the most important predictor of teachers- satisfaction with e-learning.

A Genetic Algorithm for Clustering on Image Data

Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.

Simulating the Dynamics of Distribution of Hazardous Substances Emitted by Motor Engines in a Residential Quarter

This article is dedicated to development of mathematical models for determining the dynamics of concentration of hazardous substances in urban turbulent atmosphere. Development of the mathematical models implied taking into account the time-space variability of the fields of meteorological items and such turbulent atmosphere data as vortex nature, nonlinear nature, dissipativity and diffusivity. Knowing the turbulent airflow velocity is not assumed when developing the model. However, a simplified model implies that the turbulent and molecular diffusion ratio is a piecewise constant function that changes depending on vertical distance from the earth surface. Thereby an important assumption of vertical stratification of urban air due to atmospheric accumulation of hazardous substances emitted by motor vehicles is introduced into the mathematical model. The suggested simplified non-linear mathematical model of determining the sought exhaust concentration at a priori unknown turbulent flow velocity through non-degenerate transformation is reduced to the model which is subsequently solved analytically.

IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations

On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.

Online Brands: A Comparative Study of World Top Ranked Universities with Science and Technology Programs

University websites are considered as one of the brand primary touch points for multiple stakeholders, but most of them did not have great designs to create favorable impressions. Some of the elements that web designers should carefully consider are the appearance, the content, the functionality, usability and search engine optimization. However, priority should be placed on website simplicity and negative space. In terms of content, previous research suggests that universities should include reputation, learning environment, graduate career prospects, image destination, cultural integration, and virtual tour on their websites. The study examines how top 200 world ranking science and technology-based universities present their brands online and whether the websites capture the content dimensions. Content analysis of the websites revealed that the top ranking universities captured these dimensions at varying degree. Besides, the UK-based university had better priority on website simplicity and negative space compared to the Malaysian-based university.

Specification of a Model of Honeypot Attack Based On Raised Data

The security of their network remains the priorities of almost all companies. Existing security systems have shown their limit; thus a new type of security systems was born: honeypots. Honeypots are defined as programs or intended servers which have to attract pirates to study theirs behaviours. It is in this context that the leurre.com project of gathering about twenty platforms was born. This article aims to specify a model of honeypots attack. Our model describes, on a given platform, the evolution of attacks according to theirs hours. Afterward, we show the most attacked services by the studies of attacks on the various ports. It is advisable to note that this article was elaborated within the framework of the research projects on honeyspots within the LABTIC (Laboratory of Information Technologies and Communication).

Hardware Prototyping of an Efficient Encryption Engine

An approach to develop the FPGA of a flexible key RSA encryption engine that can be used as a standard device in the secured communication system is presented. The VHDL modeling of this RSA encryption engine has the unique characteristics of supporting multiple key sizes, thus can easily be fit into the systems that require different levels of security. A simple nested loop addition and subtraction have been used in order to implement the RSA operation. This has made the processing time faster and used comparatively smaller amount of space in the FPGA. The hardware design is targeted on Altera STRATIX II device and determined that the flexible key RSA encryption engine can be best suited in the device named EP2S30F484C3. The RSA encryption implementation has made use of 13,779 units of logic elements and achieved a clock frequency of 17.77MHz. It has been verified that this RSA encryption engine can perform 32-bit, 256-bit and 1024-bit encryption operation in less than 41.585us, 531.515us and 790.61us respectively.

A Review on Soft Computing Technique in Intrusion Detection System

Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.

Performance Evaluation of a Limited Round-Robin System

Performance of a limited Round-Robin (RR) rule is studied in order to clarify the characteristics of a realistic sharing model of a processor. Under the limited RR rule, the processor allocates to each request a fixed amount of time, called a quantum, in a fixed order. The sum of the requests being allocated these quanta is kept below a fixed value. Arriving requests that cannot be allocated quanta because of such a restriction are queued or rejected. Practical performance measures, such as the relationship between the mean sojourn time, the mean number of requests, or the loss probability and the quantum size are evaluated via simulation. In the evaluation, the requested service time of an arriving request is converted into a quantum number. One of these quanta is included in an RR cycle, which means a series of quanta allocated to each request in a fixed order. The service time of the arriving request can be evaluated using the number of RR cycles required to complete the service, the number of requests receiving service, and the quantum size. Then an increase or decrease in the number of quanta that are necessary before service is completed is reevaluated at the arrival or departure of other requests. Tracking these events and calculations enables us to analyze the performance of our limited RR rule. In particular, we obtain the most suitable quantum size, which minimizes the mean sojourn time, for the case in which the switching time for each quantum is considered.

PUMA 560 Optimal Trajectory Control using Genetic Algorithm, Simulated Annealing and Generalized Pattern Search Techniques

Robot manipulators are highly coupled nonlinear systems, therefore real system and mathematical model of dynamics used for control system design are not same. Hence, fine-tuning of controller is always needed. For better tuning fast simulation speed is desired. Since, Matlab incorporates LAPACK to increase the speed and complexity of matrix computation, dynamics, forward and inverse kinematics of PUMA 560 is modeled on Matlab/Simulink in such a way that all operations are matrix based which give very less simulation time. This paper compares PID parameter tuning using Genetic Algorithm, Simulated Annealing, Generalized Pattern Search (GPS) and Hybrid Search techniques. Controller performances for all these methods are compared in terms of joint space ITSE and cartesian space ISE for tracking circular and butterfly trajectories. Disturbance signal is added to check robustness of controller. GAGPS hybrid search technique is showing best results for tuning PID controller parameters in terms of ITSE and robustness.

A Study of Touching Characters in Degraded Gurmukhi Text

Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper a study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis.Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text.