Family Structure between Muslim and Santal Communities in Rural Bangladesh

Family structure that is culturally constructed in every society is the basic unit of social structure. Purpose of the study was to compare family structure, including marriage, residence, family size, type, role sharing, authority, and communication patterns between Muslim and Santal communities in rural Bangladesh. For this we assumed that family structure with the elements was significantly different between the two communities in rural Bangladesh. In so doing, 288 active couples (145 for Muslim and 143 for Santal) selected by cluster random sampling were intensively interviewed with a semi-structured questionnaire method. The results of Pearson Chi-Squire Test reveal that there were significant differences in the family structure followed by the two communities in the study area. Further cross-cultural study should be done on why family structure varies between the communities in Bangladesh.

A Survey on Metric of Software Cognitive Complexity for OO design

In modern era, the biggest challenge facing the software industry is the upcoming of new technologies. So, the software engineers are gearing up themselves to meet and manage change in large software system. Also they find it difficult to deal with software cognitive complexities. In the last few years many metrics were proposed to measure the cognitive complexity of software. This paper aims at a comprehensive survey of the metric of software cognitive complexity. Some classic and efficient software cognitive complexity metrics, such as Class Complexity (CC), Weighted Class Complexity (WCC), Extended Weighted Class Complexity (EWCC), Class Complexity due to Inheritance (CCI) and Average Complexity of a program due to Inheritance (ACI), are discussed and analyzed. The comparison and the relationship of these metrics of software complexity are also presented.

Studding of Number of Dataset on Precision of Estimated Saturated Hydraulic Conductivity

Saturated hydraulic conductivity of Soil is an important property in processes involving water and solute flow in soils. Saturated hydraulic conductivity of soil is difficult to measure and can be highly variable, requiring a large number of replicate samples. In this study, 60 sets of soil samples were collected at Saqhez region of Kurdistan province-IRAN. The statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE) were used to evaluation the multiple linear regression models varied with number of dataset. In this study the multiple linear regression models were evaluated when only percentage of sand, silt, and clay content (SSC) were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd) were used as inputs. The R, RMSE, MBE and MAE values of the 50 dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and 12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11 and 12.92, respectively, for relationship obtained from multiple linear regressions on data. Also the R, RMSE, MBE and MAE values of the 10 dataset for method (SSC), were calculated 0.725, 19.62, - 9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618, 24.69, -17.37 and 22.16, respectively, which shows when number of dataset increase, precision of estimated saturated hydraulic conductivity, increases.

Computational Identification of MicroRNAs and their Targets in two Species of Evergreen Spruce Tree (Picea)

MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about 20 to 24 nucleotides long. Their conserved nature among the various organisms makes them a good source of new miRNAs discovery by comparative genomics approach. The study resulted in 21 miRNAs of 20 pre-miRNAs belonging to 16 families (miR156, 157, 158, 164, 165, 168, 169, 172, 319, 390, 393, 394, 395, 400, 472 and 861) in evergreen spruce tree (Picea). The miRNA families; miR 157, 158, 164, 165, 168, 169, 319, 390, 393, 394, 400, 472 and 861 are reported for the first time in the Picea. All 20 miRNA precursors form stable minimum free energy stem-loop structure as their orthologues form in Arabidopsis and the mature miRNA reside in the stem portion of the stem loop structure. Sixteen (16) miRNAs are from Picea glauca and five (5) belong to Picea sitchensis. Their targets consist of transcription factors, growth related, stressed related and hypothetical proteins.

Spent Caustic Bioregeneration by using Thiobacillus denitrificans Bacteria

Spent Sulfidic Caustic was biologically treated and regenerated for reusing by Thiobacillus denitrificans bacteria, sulfide content oxidized and RSNa reduced dramatically.PH in this test was 11.8 and no neutralization has been done on spent caustic, so spent caustic as the most difficult of industrial wastes to dispose could be regenerate and reuse instead of disposing to sea or deep wells

Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks

As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.

Principal Component Analysis for the Characterization in the Application of Some Soil Properties

The objective of this research is to study principal component analysis for classification of 67 soil samples collected from different agricultural areas in the western part of Thailand. Six soil properties were measured on the soil samples and are used as original variables. Principal component analysis is applied to reduce the number of original variables. A model based on the first two principal components accounts for 72.24% of total variance. Score plots of first two principal components were used to map with agricultural areas divided into horticulture, field crops and wetland. The results showed some relationships between soil properties and agricultural areas. PCA was shown to be a useful tool for agricultural areas classification based on soil properties.

Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel

Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in order to identify the predominant factors amongst the selected parameters. They were then categorized in order of significance followed by setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. In the present work, the influence of main process parameters (force, feed rate, number of tool passes/overruns, initial roughness of the work piece, ball material, ball diameter and lubricant used) on the surface roughness and the hardness of AISI 4140 steel were studied for both LPB and DCR process and the results are compared. It was observed that by using LPB process surface hardness has been improved by 167% and in DCR process surface hardness has been improved by 442%. It was also found that the force, ball diameter, number of tool passes and initial roughness of the workpiece are the most pronounced parameters, which has a significant effect on the work piece-s surface during deep cold rolling and low plasticity burnishing process.

In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation

Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.

Semantic Web Technologies in e - Government

e-Government is already in its second decade. Prerequisite for further development and adaptation to new realities is the optimal management of administrative information and knowledge production by those involved, i.e. the public sector, citizens and businesses. Nowadays, the amount of information displayed or distributed on the Internet has reached enormous dimensions, resulting in serious difficulties when extracting and managing knowledge. The semantic web is expected to play an important role in solving this problem and the technologies that support it. In this article, we address some relevant issues.

Health Hazards Related to Computer Use: Experience of the National Institute for Medical Research in Tanzania

This paper is based on a study conducted in 2006 to assess the impact of computer usage on health of National Institute for Medical Research (NIMR) staff. NIMR being a research Institute, most of its staff spend substantial part of their working time on computers. There was notion among NIMR staff on possible prolonged computer usage health hazards. Hence, a study was conducted to establish facts and possible mitigation measures. A total of 144 NIMR staff were involved in the study of whom 63.2% were males and 36.8% females aged between 20 and 59 years. All staff cadres were included in the sample. The functions performed by Institute staff using computers includes; data management, proposal development and report writing, research activities, secretarial duties, accounting and administrative duties, on-line information retrieval and online communication through e-mail services. The interviewed staff had been using computers for 1-8 hours a day and for a period ranging from 1 to 20 years. The study has indicated ergonomic hazards for a significant proportion of interviewees (63%) of various kinds ranging from backache to eyesight related problems. The authors highlighted major issues which are substantially applicable in preventing occurrences of computer related problems and they urged NIMR Management and/or the government of Tanzania opts to adapt their practicability.

A Proposed Framework for Visualization to Teach Computer Science

Computer programming is considered a very difficult course by many computer science students. The reasons for the difficulties include cognitive load involved in programming, different learning styles of students, instructional methodology and the choice of the programming languages. To reduce the difficulties the following have been tried: pair programming, program visualization, different learning styles etc. However, these efforts have produced limited success. This paper reviews the problem and proposes a framework to help students overcome the difficulties involved.

Impact of the Existence of One-Way Functionson the Conceptual Difficulties of Quantum Measurements

One-way functions are functions that are easy to compute but hard to invert. Their existence is an open conjecture; it would imply the existence of intractable problems (i.e. NP-problems which are not in the P complexity class). If true, the existence of one-way functions would have an impact on the theoretical framework of physics, in particularly, quantum mechanics. Such aspect of one-way functions has never been shown before. In the present work, we put forward the following. We can calculate the microscopic state (say, the particle spin in the z direction) of a macroscopic system (a measuring apparatus registering the particle z-spin) by the system macroscopic state (the apparatus output); let us call this association the function F. The question is: can we compute the function F in the inverse direction? In other words, can we compute the macroscopic state of the system through its microscopic state (the preimage F -1)? In the paper, we assume that the function F is a one-way function. The assumption implies that at the macroscopic level the Schrödinger equation becomes unfeasible to compute. This unfeasibility plays a role of limit of the validity of the linear Schrödinger equation.

Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators

The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.

Packaging and Interconnection Technologies of Power Devices, Challenges and Future Trends

Standard packaging and interconnection technologies of power devices have difficulties meeting the increasing thermal demands of new application fields of power electronics devices. Main restrictions are the decreasing reliability of bond-wires and solder layers with increasing junction temperature. In the last few years intensive efforts have been invested in developing new packaging and interconnection solutions which may open a path to future application of power devices. In this paper, the main failure mechanisms of power devices are described and principle of new packaging and interconnection concepts and their power cycling reliability are presented.

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells

In this paper we present two novel 1-bit full adder cells in dynamic logic style. NP-CMOS (Zipper) and Multi-Output structures are used to design the adder blocks. Characteristic of dynamic logic leads to higher speeds than the other standard static full adder cells. Using HSpice and 0.18┬Ám CMOS technology exhibits a significant decrease in the cell delay which can result in a considerable reduction in the power-delay product (PDP). The PDP of Multi-Output design at 1.8v power supply is around 0.15 femto joule that is 5% lower than conventional dynamic full adder cell and at least 21% lower than other static full adders.

Modeling Reaction Time in Car-Following Behaviour Based on Human Factors

This paper develops driver reaction-time models for car-following analysis based on human factors. The reaction time was classified as brake-reaction time (BRT) and acceleration/deceleration reaction time (ADRT). The BRT occurs when the lead vehicle is barking and its brake light is on, while the ADRT occurs when the driver reacts to adjust his/her speed using the gas pedal only. The study evaluates the effect of driver characteristics and traffic kinematic conditions on the driver reaction time in a car-following environment. The kinematic conditions introduced urgency and expectancy based on the braking behaviour of the lead vehicle at different speeds and spacing. The kinematic conditions were used for evaluating the BRT and are classified as normal, surprised, and stationary. Data were collected on a driving simulator integrated into a real car and included the BRT and ADRT (as dependent variables) and driver-s age, gender, driving experience, driving intensity (driving hours per week), vehicle speed, and spacing (as independent variables). The results showed that there was a significant difference in the BRT at normal, surprised, and stationary scenarios and supported the hypothesis that both urgency and expectancy had significant effects on BRT. Driver-s age, gender, speed, and spacing were found to be significant variables for the BRT in all scenarios. The results also showed that driver-s age and gender were significant variables for the ADRT. The research presented in this paper is part of a larger project to develop a driversensitive in-vehicle rear-end collision warning system.

Spectral Analysis of Speech: A New Technique

ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET.

Flexural Strength and Ductility Improvement of NSC beams

In order to calculate the flexural strength of normal-strength concrete (NSC) beams, the nonlinear actual concrete stress distribution within the compression zone is normally replaced by an equivalent rectangular stress block, with two coefficients of α and β to regulate the intensity and depth of the equivalent stress respectively. For NSC beams design, α and β are usually assumed constant as 0.85 and 0.80 in reinforced concrete (RC) codes. From an earlier investigation of the authors, α is not a constant but significantly affected by flexural strain gradient, and increases with the increasing of strain gradient till a maximum value. It indicates that larger concrete stress can be developed in flexure than that stipulated by design codes. As an extension and application of the authors- previous study, the modified equivalent concrete stress block is used here to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singly- and doubly- NSC beams, through which both strength and ductility design limits are improved by taking into account strain gradient effect.