A Calibration Approach towards Reducing ASM2d Parameter Subsets in Phosphorus Removal Processes

A novel calibration approach that aims to reduce ASM2d parameter subsets and decrease the model complexity is presented. This approach does not require high computational demand and reduces the number of modeling parameters required to achieve the ASMs calibration by employing a sensitivity and iteration methodology. Parameter sensitivity is a crucial factor and the iteration methodology enables refinement of the simulation parameter values. When completing the iteration process, parameters values are determined in descending order of their sensitivities. The number of iterations required is equal to the number of model parameters of the parameter significance ranking. This approach was used for the ASM2d model to the evaluated EBPR phosphorus removal and it was successful. Results of the simulation provide calibration parameters. These included YPAO, YPO4, YPHA, qPHA, qPP, μPAO, bPAO, bPP, bPHA, KPS, YA, μAUT, bAUT, KO2 AUT, and KNH4 AUT. Those parameters were corresponding to the experimental data available.

Terminal Velocity of a Bubble Rise in a Liquid Column

As it is known, buoyancy and drag forces rule bubble's rise velocity in a liquid column. These forces are strongly dependent on fluid properties, gravity as well as equivalent's diameter. This study reports a set of bubble rising velocity experiments in a liquid column using water or glycerol. Several records of terminal velocity were obtained. The results show that bubble's rise terminal velocity is strongly dependent on dynamic viscosity effect. The data set allowed to have some terminal velocities data interval of 8.0 ? 32.9 cm/s with Reynolds number interval 1.3 -7490. The bubble's movement was recorded with a video camera. The main goal is to present an original set data and results that will be discussed based on two-phase flow's theory. It will also discussed, the prediction of terminal velocity of a single bubble in liquid, as well as the range of its applicability. In conclusion, this study presents general expressions for the determination of the terminal velocity of isolated gas bubbles of a Reynolds number range, when the fluid proprieties are known.

Does the Polysemic Nature of Energy Security Make it a 'Wicked' Problem?

Governments around the world are expending considerable time and resources framing strategies and policies to deliver energy security. The term 'energy security' has quietly slipped into the energy lexicon without any meaningful discourse about its meaning or assumptions. An examination of explicit and inferred definitions finds that the concept is inherently slippery because it is polysemic in nature having multiple dimensions and taking on different specificities depending on the country (or continent), timeframe or energy source to which it is applied. But what does this mean for policymakers? Can traditional policy approaches be used to address the problem of energy security or does its- polysemic qualities mean that it should be treated as a 'wicked' problem? To answer this question, the paper assesses energy security against nine commonly cited characteristics of wicked policy problems and finds strong evidence of 'wickedness'.

Development of Improved Three Dimensional Unstructured Tetrahedral Mesh Generator

Meshing is the process of discretizing problem domain into many sub domains before the numerical calculation can be performed. One of the most popular meshes among many types of meshes is tetrahedral mesh, due to their flexibility to fit into almost any domain shape. In both 2D and 3D domains, triangular and tetrahedral meshes can be generated by using Delaunay triangulation. The quality of mesh is an important factor in performing any Computational Fluid Dynamics (CFD) simulations as the results is highly affected by the mesh quality. Many efforts had been done in order to improve the quality of the mesh. The paper describes a mesh generation routine which has been developed capable of generating high quality tetrahedral cells in arbitrary complex geometry. A few test cases in CFD problems are used for testing the mesh generator. The result of the mesh is compared with the one generated by a commercial software. The results show that no sliver exists for the meshes generated, and the overall quality is acceptable since the percentage of the bad tetrahedral is relatively small. The boundary recovery was also successfully done where all the missing faces are rebuilt.

MNECLIB2 – A Classical Music Digital Library

Lately there has been a significant boost of interest in music digital libraries, which constitute an attractive area of research and development due to their inherent interesting issues and challenging technical problems, solutions to which will be highly appreciated by enthusiastic end-users. We present here a DL that we have developed to support users in their quest for classical music pieces within a particular collection of 18,000+ audio recordings. To cope with the early DL model limitations, we have used a refined socio-semantic and contextual model that allows rich bibliographic content description, along with semantic annotations, reviewing, rating, knowledge sharing etc. The multi-layered service model allows incorporation of local and distributed information, construction of rich hypermedia documents, expressing the complex relationships between various objects and multi-dimensional spaces, agents, actors, services, communities, scenarios etc., and facilitates collaborative activities to offer to individual users the needed collections and services.

Numerical Simulation of Conjugated Heat Transfer Characteristics of Laminar Air Flows in Parallel-Plate Dimpled Channels

This paper presents a numerical study on surface heat transfer characteristics of laminar air flows in parallel-plate dimpled channels. The two-dimensional numerical model is provided by commercial code FLUENT and the results are obtained for channels with symmetrically opposing hemi-cylindrical cavities onto both walls for Reynolds number ranging from 1000 to 2500. The influence of variations in relative depth of dimples (the ratio of cavity depth to the cavity curvature diameter), the number of them and the thermophysical properties of channel walls on heat transfer enhancement is studied. The results are evident for existence of an optimum value for the relative depth of dimples in which the largest wall heat flux and average Nusselt number can be achieved. In addition, the results of conjugation simulation indicate that the overall influence of the ratio of wall thermal conductivity to the one of the fluid on heat transfer rate is not much significant and can be ignored.

Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis

Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.

Neuro Fuzzy and Self Tunging Fuzzy Controller to Improve Pitch and Yaw Control Systems Resposes of Twin Rotor MIMO System

In this paper, Neuro-Fuzzy based Fuzzy Subtractive Clustering Method (FSCM) and Self Tuning Fuzzy PD-like Controller (STFPDC) were used to solve non-linearity and trajectory problems of pitch AND yaw angles of Twin Rotor MIMO system (TRMS). The control objective is to make the beams of TRMS reach a desired position quickly and accurately. The proposed method could achieve control objectives with simpler controller. To simplify the complexity of STFPDC, ANFIS based FSCM was used to simplify the controller and improve the response. The proposed controllers could achieve satisfactory objectives under different input signals. Simulation results under MATLAB/Simulink® proved the improvement of response and superiority of simplified STFPDC on Fuzzy Logic Controller (FLC).

Numerical Investigation of Instabilities in Free Shear Layer Produced by NS-DBD Actuator

A numerical investigation of the effects of nanosecond barrier discharge on the stability of a two-dimensional free shear layer is performed. The computations are carried out using a compressible Navier-Stokes algorithm coupled with a thermodynamic model of the discharge. The results show that significant increases in the shear layer-s momentum thickness and Reynolds stresses occur due to actuation. Dependence on both frequency and amplitude of actuation are considered, and a comparison is made of the computed growth rates with those predicted by linear stability theory. Amplitude and frequency ranges for the efficient promotion of shear-layer instabilities are identified.

Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach

This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.

Probabilistic Approach as a Method Used in the Solution of Engineering Design for Biomechanics and Mining

This paper focuses on the probabilistic numerical solution of the problems in biomechanics and mining. Applications of Simulation-Based Reliability Assessment (SBRA) Method are presented in the solution of designing of the external fixators applied in traumatology and orthopaedics (these fixators can be applied for the treatment of open and unstable fractures etc.) and in the solution of a hard rock (ore) disintegration process (i.e. the bit moves into the ore and subsequently disintegrates it, the results are compared with experiments, new design of excavation tool is proposed.

Effect of Dynamic Stall, Finite Aspect Ratio and Streamtube Expansion on VAWT Performance Prediction using the BE-M Model

A multiple-option analytical model for the evaluation of the energy performance and distribution of aerodynamic forces acting on a vertical-axis Darrieus wind turbine depending on both rotor architecture and operating conditions is presented. For this purpose, a numerical algorithm, capable of generating the desired rotor conformation depending on design geometric parameters, is coupled to a Single/Double-Disk Multiple-Streamtube Blade Element – Momentum code. Both single and double-disk configurations are analyzed and model predictions are compared to literature experimental data in order to test the capability of the code for predicting rotor performance. Effective airfoil characteristics based on local blade Reynolds number are obtained through interpolation of literature low-Reynolds airfoil databases. Some corrections are introduced inside the original model with the aim of simulating also the effects of blade dynamic stall, rotor streamtube expansion and blade finite aspect ratio, for which a new empirical relationship to better fit the experimental data is proposed. In order to predict also open field rotor operation, a freestream wind shear profile is implemented, reproducing the effect of atmospheric boundary layer.

A Study on Energy-efficient Temperature Control

The top-heavy demographic of low birth-rate and longer lifespan is a growing social problem, and one of its expected effects will be a shortage of young workers and a growing reliance on a workforce of middle-aged and older people. However, the environment of today's industrial workplace is not particularly suited to middle-aged and older workers, one notable problem being temperature control. Higher temperatures can cause health problems such as heat stroke, and the number of cases increases sharply in people over 65. Moreover, in conditions above 33°C, older people can develop circulatory system disorders, and also have a higher chance of suffering a fatal heart attack. We therefore propose a new method for controlling temperature in the indoor workplace. In this study two different verification experiments were conducted, with the proposed temperature control method being tested in cargo containers and conventional houses. The method's effectiveness was apparent in measurements of temperature and electricity consumption

Evaluating Telepresence Experience and Game Players' Intention to Purchase Product Advertised in Advergame

In line with changes of consumers modern lifestyle has call for the advertising strategy to change. This research is to find out how game with telepresence and product experience embedded in the computer game to affect users- intention to purchase. Game content developers are urging to consider of placing product message as part of game design strategy that can influence the game player-s intention to purchase. Experiment was carried out on two hundred and fifty undergraduate students who volunteered to participate in the Internet game playing activities. A factor analysis and correlation analysis was performed on items designed to measure telepresence, attitudes toward telepresence, and game player intention to purchase the product advertise in the game that respondents experienced. The results indicated that telepresence consist of interactive experience and product experience. The study also found that product experience is positively related to the game players- intention to purchase. The significance of product experience implies the usefulness of an interactive advertising in the game playing to attract players- intention to purchase the advertised product placed in the creative game design.

Knowledge and Skills Requirements for Software Developer Students

It is widely acknowledged that there is a shortage of software developers, not only in South Africa, but also worldwide. Despite reports on a gap between industry needs and software education, the gap has mostly been explored in quantitative studies. This paper reports on the qualitative data of a mixed method study of the perceptions of professional software developers regarding what topics they learned from their formal education and the importance of these topics to their actual work. The analysis suggests that there is a gap between industry’s needs and software development education and the following recommendations are made: 1) Real-life projects must be included in students’ education; 2) Soft skills and business skills must be included in curricula; 3) Universities must keep the curriculum up to date; 4) Software development education must be made accessible to a diverse range of students.

Improving the Elder-s Quality of Life with Smart Television Based Services

The increasing number of senior population gradually causes to demand the use of information and communication technology for their satisfactory lives. This paper presents the development of an integrated TV based system which offers an opportunity to provide value added services to a large number of elderly citizens, and thus helps improve their quality of life. The design philosophy underlying this paper is to fulfill both technological and human aspects. The balance between these two dimensions has been currently stressed as a crucial element for the design of usable systems in real use, particularly to the elderly who have physical and mental decline. As the first step to achieve it, we have identified human and social factors that affect the elder-s quality of life by a literature review, and based on them, build four fundamental services: information, healthcare, learning and social network services. Secondly, the system architecture, employed technologies and the elderly-friendly system design considerations are presented. This reflects technological and human perspectives in terms of the system design. Finally, we describe some scenarios that illustrate the potentiality of the proposed system to improve elderly people-s quality of life.

Controllability of Efficiency of Antiviral Therapy in Hepatitis B Virus Infections

An optimal control problem for a mathematical model of efficiency of antiviral therapy in hepatitis B virus infections is considered. The aim of the study is to control the new viral production, block the new infection cells and maintain the number of uninfected cells in the given range. The optimal controls represent the efficiency of antiviral therapy in inhibiting viral production and preventing new infections. Defining the cost functional, the optimal control problem is converted into the constrained optimization problem and the first order optimality system is derived. For the numerical simulation, we propose the steepest descent algorithm based on the adjoint variable method. A computer program in MATLAB is developed for the numerical simulations.

Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm

In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.

Abai Kunanbayev's Role in Enrichment of the Kazakh Language

Abai Kunanbayev is famous for being enlightener, composer, interpreter, social agent, philosopher, reformer, who wanted to enrich Kazakh literature by emergence with Russian and European culture, and also as a founder of Kazakh written literary language. Abai Kunanbayev was born in 1845 in East Kazakhstan area and passed away in 1904 in his hometown. His oeuvre absorbed and reflected all changes in the life of Kazakh society of the second half of XIX century. Because ХІХ century, especially its second half, was an important transition period for Kazakhstan, which radically changed traditional way of Kazakh society and predetermined further development in consequence of activation of Russian colonial policy and approval of commodity-money relations in Steppe Land.Abai Kunanbayev, besides Arabic and Persian common words and loanwords from Quran in his words of edification, had used a lot of words of Arabic, Persian, Latin, Russian, Nogai, Shaghatai, Polish, Greek, Turkish, which are used in the Kazakh language.

Six Sigma Process and its Impact on the Organizational Productivity

The six sigma method is a project-driven management approach to improve the organization-s products, services, and processes by continually reducing defects in the organization. Understanding the key features, obstacles, and shortcomings of the six sigma method allows organizations to better support their strategic directions, and increasing needs for coaching, mentoring, and training. It also provides opportunities to better implement six sigma projects. The purpose of this paper is the survey of six sigma process and its impact on the organizational productivity. So I have studied key concepts , problem solving process of six sigmaas well as the survey of important fields such as: DMAIC, six sigma and productivity applied programme, and other advantages of six sigma. In the end of this paper, present research conclusions. (direct and positive relation between six sigma and productivity)