A Novel Approach to Optimal Cutting Tool Replacement

In metal cutting industries, mathematical/statistical models are typically used to predict tool replacement time. These off-line methods usually result in less than optimum replacement time thereby either wasting resources or causing quality problems. The few online real-time methods proposed use indirect measurement techniques and are prone to similar errors. Our idea is based on identifying the optimal replacement time using an electronic nose to detect the airborne compounds released when the tool wear reaches to a chemical substrate doped into tool material during the fabrication. The study investigates the feasibility of the idea, possible doping materials and methods along with data stream mining techniques for detection and monitoring different phases of tool wear.

Efficient Copy-Move Forgery Detection for Digital Images

Due to availability of powerful image processing software and improvement of human computer knowledge, it becomes easy to tamper images. Manipulation of digital images in different fields like court of law and medical imaging create a serious problem nowadays. Copy-move forgery is one of the most common types of forgery which copies some part of the image and pastes it to another part of the same image to cover an important scene. In this paper, a copy-move forgery detection method proposed based on Fourier transform to detect forgeries. Firstly, image is divided to same size blocks and Fourier transform is performed on each block. Similarity in the Fourier transform between different blocks provides an indication of the copy-move operation. The experimental results prove that the proposed method works on reasonable time and works well for gray scale and colour images. Computational complexity reduced by using Fourier transform in this method.

Sperm Production Rate, Gonadal and Extragonadal Sperm Reserves in the Sokoto Red (Maradi) Buck in a Tropical Environment

28 healthy adult Maradi bucks were used to evaluate sperm production and sperm storage capacity in the breed. Daily sperm production (DSP) averaged 0.55±0.05x109, while the daily sperm production/g (DSP/g) was 1.37±0.12 x107. Gonadal sperm reserve was 1.99±0.18 x109, while the caput, upper corpus and lower corpus averaged 0.58±0.04 x109, 0.36±0.02 x109 and 0.33±0.08 x109 respectively. The proximal cauda, mid cauda, distal cauda and ductus deferens had values of 0.68±0.10 x109, 1.23±0.16 x109,1.87±0. x109and 0.17±0.05 x109 respectively. The relative contributions of the respective epididymal sections and ductus deferens to the total extragonadal sperm reserves were, 11.11%, 6.89%, 6.32%, 13.03%, 23.56%, 35.82% and 3.26% respectively. Gonadal sperm reserves were significantly higher (p0.05) to mid cauda and distal cauda epididymal reserves.

Multifunctional Electrical Outlet based on Mobile Ad Hoc Network

Nowadays, new home appliances and office appliances have been developed that communicate with users through the Internet, for remote monitor and remote control. However, developments and sales of these new appliances are just started, then, many products in our houses and offices do not have these useful functions. In few years, we add these new functions to the outlet, it means multifunctional electrical power socket plug adapter. The outlet measure power consumption of connecting appliances, and it can switch power supply to connecting appliances, too. Using this outlet, power supply of old appliances can be control and monitor. And we developed the interface system using web browser to operate it from users[1]. But, this system need to set up LAN cables between outlets and so on. It is not convenience that cables around rooms. In this paper, we develop the system that use wireless mobile ad hoc network instead of wired LAN to communicate with the outlets.

Preparation and Some Mechanical Properties of Composite Materials Made from Sawdust, Cassava Starch and Natural Rubber Latex

The composite materials were prepared by sawdust, cassava starch and natural rubber latex (NR). The mixtures of 15%w/v gelatinized cassava starch and 15%w/v PVOH were used as the binder of these composite materials. The concentrated rubber latex was added to the mixtures. They were mixed rigorously to the treated sawdust in the ratio of 70:30 until achive uniform dispersion. The batters were subjected to the hot compression moulding at the temperature of 160°C and 3,000 psi pressure for 5 min. The experimental results showed that the mechanical properties of composite materials, which contained the gelatinized cassava starch and PVOH in the ratio of 2:1, 20% NR latex by weight of the dry starch and treated sawdust with 5%NaOH or 1% BPO, were the best. It contributed the maximal compression strength (341.10 + 26.11 N), puncture resistance (8.79 + 0.98 N/mm2) and flexural strength (3.99 + 0.72N/mm2). It is also found that the physicochemical and mechanical properties of composites strongly depends on the interface quality of sawdust, cassava starch and NR latex.

Feedrate Optimization for Ball-end milling of Sculptured Surfaces using Fuzzy Logic Controller

Optimization of cutting parameters important in precision machining in regards to efficiency and surface integrity of the machined part. Usually productivity and precision in machining is limited by the forces emanating from the cutting process. Due to the inherent varying nature of the workpiece in terms of geometry and material composition, the peak cutting forces vary from point to point during machining process. In order to increase productivity without compromising on machining accuracy, it is important to control these cutting forces. In this paper a fuzzy logic control algorithm is developed that can be applied in the control of peak cutting forces in milling of spherical surfaces using ball end mills. The controller can adaptively vary the feedrate to maintain allowable cutting force on the tool. This control algorithm is implemented in a computer numerical control (CNC) machine. It has been demonstrated that the controller can provide stable machining and improve the performance of the CNC milling process by varying feedrate.

The Impact of the Economic Crises over Management Marketing Strategies of Romanian B2B Companies

The main objective of the paper has been represented by the identification of the changes that occurred in the competitive environment and their impact on the strategic marketing management of companies in B2B market. At Romania-s level there has not yet been done a similar research that studies change management in crises on business to business field. In order to answer to the paper-s objectives, a qualitative marketing research (in-depth structured interview) was conducted, within the top management of 27 companies in Romanian business to business field. The main results of the research highlight the necessity of a management of change, as a result of the crises, as follows: changes in the corporate objectives (from development objectives to maintaining objectives), changes market segmentation and in competitive advantages, changes at the level of market strategies and of the marketing mix.

Economic Returns of Using Brewery`s Spent Grain in Animal Feed

UK breweries generate extensive by products in the form of spent grain, slurry and yeast. Much of the spent grain is produced by large breweries and processed in bulk for animal feed. Spent brewery grains contain up to 20% protein dry weight and up to 60% fiber and are useful additions to animal feed. Bulk processing is economic and allows spent grain to be sold so providing an income to the brewery. A proportion of spent grain, however, is produced by small local breweries and is more variably distributed to farms or other users using intermittent collection methods. Such use is much less economic and may incur losses if not carefully assessed for transport costs. This study reports an economic returns of using wet brewery spent grain (WBSG) in animal feed using the Co-product Optimizer Decision Evaluator model (Cattle CODE) developed by the University of Nebraska to predict performance and economic returns when byproducts are fed to finishing cattle. The results indicated that distance from brewery to farm had a significantly greater effect on the economics of use of small brewery spent grain and that alternative uses than cattle feed may be important to develop.

The Effects of Human Activity in Yasuj Area on the Health of Stream City

The Yasuj city stream named the Beshar supply water for different usages such as aquaculture farms , drinking, agricultural and industrial usages. Fish processing plants ,Agricultural farms, waste water of industrial zones and hospitals waste water which they are generate by human activity produce a considerable volume of effluent and when they are released in to the stream they can effect on the water quality and down stream aquatic systems. This study was conducted to evaluate the effects of outflow effluent from different human activity and point and non point pollution sources on the water quality and health of the Beshar river next to Yasuj. Yasuj is the biggest and most important city in the Kohkiloye and Boyerahmad province . The Beshar River is one of the most important aquatic ecosystems in the upstream of the Karun watershed in south of Iran which is affected by point and non point pollutant sources . This study was done in order to evaluate the effects of human activities on the water quality and health of the Beshar river. This river is approximately 190 km in length and situated at the geographical positions of 51° 20' to 51° 48' E and 30° 18' to 30° 52' N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province in south-west Iran. In this research project, five study stations were selected to examine water pollution in the Beshar River systems. Human activity is now one of the most important factors affecting on hydrology and water quality of the Beshar river. Humans use large amounts of resources to sustain various standards of living, although measures of sustainability are highly variable depending on how sustainability is defined. The Beshar river ecosystems are particularly sensitive and vulnerable to human activities. The water samples were analyzed, then some important water quality parameters such as pH, dissolve oxygen (DO), Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solids (TDS),Turbidity, Temperature, Nitrates (NO3) and Phosphates (PO4) were estimated at the two stations. The results show a downward trend in the water quality at the down stream of the city. The amounts of BOD5,COD,TSS,T,Turbidity, NO3 and PO4 in the down stream stations were considerably more than the station 1. By contrast the amounts of DO in the down stream stations were less than to the station 1. However when effluent discharge consequence of human activities are released into the Beshar river near the city, the quality of river are decreases and the environmental problems of the river during the next years are predicted to rise.

Research on Simulation Model of Collision Force between Floating Ice and Pier

Adopting the measured constitutive relationship of stress-strain of river ice, the finite element analysis model of percussive force of river ice and pier is established, by the explicit dynamical analysis software package LS-DYNA. Effects of element types, contact method and arithmetic of ice and pier, coupled modes between different elements, mesh density of pier, and ice sheet in contact area on the collision force are studied. Some of measures for the collision force analysis of river ice and pier are proposed as follows: bridge girder can adopt beam161 element with 3-node; pier below the line of 1.30m above ice surface and ice sheet use solid164 element with 8-node; in order to accomplish the connection of different elements, the rigid body with 0.01-0.05m thickness is defined between solid164 and beam161; the contact type of ice and pier adopts AUTOMATIC_SURFACE_TO_SURFACE, using symmetrical penalty function algorithms; meshing size of pier below the line of 1.30m above ice surface should not less than 0.25×0.25×0.5m3. The simulation results have the advantage of high precision by making a comparison between measured and computed data. The research results can be referred for collision force study between river ice and pier.

LOD Exploitation and Fast Silhouette Detection for Shadow Volumes

Shadows add great amount of realism to a scene and many algorithms exists to generate shadows. Recently, Shadow volumes (SVs) have made great achievements to place a valuable position in the gaming industries. Looking at this, we concentrate on simple but valuable initial partial steps for further optimization in SV generation, i.e.; model simplification and silhouette edge detection and tracking. Shadow volumes (SVs) usually takes time in generating boundary silhouettes of the object and if the object is complex then the generation of edges become much harder and slower in process. The challenge gets stiffer when real time shadow generation and rendering is demanded. We investigated a way to use the real time silhouette edge detection method, which takes the advantage of spatial and temporal coherence, and exploit the level-of-details (LOD) technique for reducing silhouette edges of the model to use the simplified version of the model for shadow generation speeding up the running time. These steps highly reduce the execution time of shadow volume generations in real-time and are easily flexible to any of the recently proposed SV techniques. Our main focus is to exploit the LOD and silhouette edge detection technique, adopting them to further enhance the shadow volume generations for real time rendering.

Greening the Greyfields: Unlocking the Redevelopment Potential of the Middle Suburbs in Australian Cities

Pressures for urban redevelopment are intensifying in all large cities. A new logic for urban development is required – green urbanism – that provides a spatial framework for directing population and investment inwards to brownfields and greyfields precincts, rather than outwards to the greenfields. This represents both a major opportunity and a major challenge for city planners in pluralist liberal democracies. However, plans for more compact forms of urban redevelopment are stalling in the face of community resistance. A new paradigm and spatial planning platform is required that will support timely multi-level and multi-actor stakeholder engagement, resulting in the emergence of consensus plans for precinct-level urban regeneration capable of more rapid implementation. Using Melbourne, Australia as a case study, this paper addresses two of the urban intervention challenges – where and how – via the application of a 21st century planning tool ENVISION created for this purpose.

Fast 2.5D Model Reconstruction of Assembled Parts with High Occlusion for Completeness Inspection

In this work a dual laser triangulation system is presented for fast building of 2.5D textured models of objects within a production line. This scanner is designed to produce data suitable for 3D completeness inspection algorithms. For this purpose two laser projectors have been used in order to considerably reduce the problem of occlusions in the camera movement direction. Results of reconstruction of electronic boards are presented, together with a comparison with a commercial system.

Some Mechanical Properties of Cement Stabilized Malaysian Soft Clay

Soft clays are defined as cohesive soil whose water content is higher than its liquid limits. Thus, soil-cement mixing is adopted to improve the ground conditions by enhancing the strength and deformation characteristics of the soft clays. For the above mentioned reasons, a series of laboratory tests were carried out to study some fundamental mechanical properties of cement stabilized soft clay. The test specimens were prepared by varying the portion of ordinary Portland cement to the soft clay sample retrieved from the test site of RECESS (Research Centre for Soft Soil). Comparisons were made for both homogeneous and columnar system specimens by relating the effects of cement stabilized clay of for 0, 5 and 10 % cement and curing for 3, 28 and 56 days. The mechanical properties examined included one-dimensional compressibility and undrained shear strength. For the mechanical properties, both homogeneous and columnar system specimens were prepared to examine the effect of different cement contents and curing periods on the stabilized soil. The one-dimensional compressibility test was conducted using an oedometer, while a direct shear box was used for measuring the undrained shear strength. The higher the value of cement content, the greater is the enhancement of the yield stress and the decrease of compression index. The value of cement content in a specimen is a more active parameter than the curing period.

Rational Structure of Cable Truss

One of the main problems of suspended cable structures is initial shape change under the action of non uniform load. The problem can be solved by increasing of weight of construction or by using of prestressing. But this methods cause increasing of materials consumption of suspended cable structure. The cable truss usage is another way how the problem of shape change under the action of non uniform load can be fixed. The cable trusses with the vertical and inclined suspensions, cross web and single cable were analyzed as the main load-bearing structures of suspension bridge. It was shown, that usage of cable truss allows to reduce the vertical displacements up to 32% in comparison with the single cable in case of non uniformly distributed load. In case of uniformly distributed load single cable is preferable.

Bitrate Reduction Using FMO for Video Streaming over Packet Networks

Flexible macroblock ordering (FMO), adopted in the H.264 standard, allows to partition all macroblocks (MBs) in a frame into separate groups of MBs called Slice Groups (SGs). FMO can not only support error-resilience, but also control the size of video packets for different network types. However, it is well-known that the number of bits required for encoding the frame is increased by adopting FMO. In this paper, we propose a novel algorithm that can reduce the bitrate overhead caused by utilizing FMO. In the proposed algorithm, all MBs are grouped in SGs based on the similarity of the transform coefficients. Experimental results show that our algorithm can reduce the bitrate as compared with conventional FMO.

Adsorption of Lead(II) and Cadmium(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Cashew Nut Shells

Cashew nut shells were converted into activated carbon powders using KOH activation plus CO2 gasification at 1027 K. The increase both of impregnation ratio and activation time, there was swiftly the development of mesoporous structure with increasing of mesopore volume ratio from 20-28% and 27-45% for activated carbon with ratio of KOH per char equal to 1 and 4, respectively. Activated carbon derived from KOH/char ratio equal to 1 and CO2 gasification time from 20 to 150 minutes were exhibited the BET surface area increasing from 222 to 627 m2.g-1. And those were derived from KOH/char ratio of 4 with activation time from 20 to 150 minutes exhibited high BET surface area from 682 to 1026 m2.g-1. The adsorption of Lead(II) and Cadmium(II) ion was investigated. This adsorbent exhibited excellent adsorption for Lead(II) and Cadmium(II) ion. Maximum adsorption presented at 99.61% at pH 6.5 and 98.87% at optimum conditions. The experimental data was calculated from Freundlich isotherm and Langmuir isotherm model. The maximum capacity of Pb2+ and Cd2+ ions was found to be 28.90 m2.g-1 and 14.29 m2.g-1, respectively.

Antimicrobial Activity and Phytochemicals Screening of Jojoba (Simmondsia chinensis) Root Extracts and Latex

Plants are rich sources of bioactive compounds. In this study the photochemical screening of hexane, ethanolic and aqueous extracts of roots and latex of jojoba (Simmondsia chinensis) plant revealed the presence of saponins, tannins, alkaloids, steroids and glycosides. Ethanolic extract was found to be richer in these metabolites than hexane, aqueous extracts and latex. The extracts and latex displayed effective antimicrobial activity against Salmonella typhimurium, Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus flavus. The increase in volume of the extracts and latex caused more activity, as shown by zones of inhibition. Candida albicans growth was inhibited only by hexane extract. Jojoba latex was not effective against Candida albicans at 0.1 and 0.5 ml extracts concentration but showed 5mm zone of inhibition at (1.0 ml). Lower volume (0.1ml) of latex encouraged Aspergillus flavus growth, while at (1.00 ml) reduced its mycelial growth. Thus, jojoba root extracts and latex can be of potential natural antimicrobial agents.

Standardization of Ayurvedic Formulation (Marichyadi Vati) Using HPLC and HPTLC Methods

The present investigation was aimed to develop methodology for the standardization of Marichyadi Vati and its raw materials. Standardization was carried using systematic Pharmacognostical and physicochemical parameters as per WHO guidelines. The detailed standardization of Marichyadi Vati, it is concluded that there are no major differences prevailed in the quality of marketed products and laboratory samples of Marichyadi Vati. However, market samples showed slightly better amount of Piperine than the laboratory sample by both methods. This is the first attempt to generate complete set of standards required for the Marichyadi Vati.

Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque

MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.