Rational Structure of Cable Truss

One of the main problems of suspended cable structures is initial shape change under the action of non uniform load. The problem can be solved by increasing of weight of construction or by using of prestressing. But this methods cause increasing of materials consumption of suspended cable structure. The cable truss usage is another way how the problem of shape change under the action of non uniform load can be fixed. The cable trusses with the vertical and inclined suspensions, cross web and single cable were analyzed as the main load-bearing structures of suspension bridge. It was shown, that usage of cable truss allows to reduce the vertical displacements up to 32% in comparison with the single cable in case of non uniformly distributed load. In case of uniformly distributed load single cable is preferable.





References:
[1] European Committee for Standardization, Eurocode 1: Actions on
structures - Part 2: Traffic loads on bridges, Brussels, 2004
[2] Fiberline Composites A/S, Design Manual. - Middelfart: Fiberline
Composites A/S, 2002.
[3] Fletcher R., Practical methods of optimization, 2nd edition, London: John
Willey &Sons Inc., 2000.
[4] Gogol M., "Shaping of Effective Steel Structures," in Scientific
proceedings of Rzeszow Technical University, Rzeszow: Rzeszow
Technical University, 2009. (Nr. 264), p. 43-56.
[5] Goremikins V., Serdjuks D., "Rational Structure of Trussed Beam," in
Proc. The 10th International Conference "Modern Building Materials,
Structures and Techniques", Vilnius: Vilnius Gediminas Technical
University, 2010, pp. 613-618.
[6] Goremikins V., Rocens K., Serdjuks D., "Rational Structure of
Composite Trussed Beam," in Proc. The 16th International Conference
"Mechanics of composite materials, Riga: Institute of Polymer
Mechanics, 2010, p. 75.
[7] Montgomery D.C. Design and analysis of experiments, 5th edition, New
York: John Willey &Sons Inc., 2001.
[8] Serdjuks, D.; Rocens, K., "Decrease the Displacements of a Composite
Saddle-Shaped Cable Roof," Mech. Compos. Materials, Vol. 40, No5.,
2004.
[9] Shen, Z.Y.; Li, G.Q.; Zhang, Q.L., "Advances in steel structures," in
Proc. Fourth International Conference, Shanghai, China, 2005.
[10] Wai-Fah Chen, Eric M. Lui, Handbook of structural engineering, New
York, 2005.
[11] Барабаш М, Лазнюк М., Мартынова, М., Пресняков, Н.,
Современные технологии расчета и проектирования
металлических и деревянных конструкций. (Modern Designing and
Calculation Techniques of Steel and Timber Structures), Москва:
Издательство Асоции строительных вузов, 2008.
[12] Бахтин С., Овчинников И., Инамов Р., Висячие и вантовые мосты
(Suspension and Cable Bridges), Саратов: Сарат. гос. техн. ун-т, 1999.
[13] Беленя Е., Стальные конструкции: Спецкурс (Steel Structures:
Special Course), Москва: Стройиздат, 1991.
[14] Ведеников Г., Металлические конструкции: Общий курс(Steel
Structures: General Course), Москва: Стройиздат, 1998.
[15] Городецкий А., Евзоров И., 2005. Компьютерные модели
конструкций (Structures computer models), Киев: Факт, 2005.
[16] Ермолов В., Инженерные конструкции (Engineering Structures),
Москва: Высшая школа, 1991.
[17] Кирсанов М. Висячие системы повышенной жесткости
(Suspension Structures with Increased Stiffness), Москва: Стройиздат,
1983.
[18] Михайлов В., Предварительно напряженные комбинированные и
вантовые конструкции (Prestressed Combined and Cable Structures),
Москва: ACB, 2002.
[19] Петропавловский А., Вантовые мосты (Cable Bridges), Москва:
Транспорт, 1985.
[20] Смирнов В., Висячие мосты больших пролетов (Large Span
Suspension Bridges), Москва: Высшая школа, 1970.
[21] Трущев А., Пространственные металлические конструкции
(Spatious Steel Structures), Москва: Стройиздат. 1983.