Use of Agricultural Waste for the Removal of Nickel Ions from Aqueous Solutions: Equilibrium and Kinetics Studies

The potential of economically cheaper cellulose containing natural materials like rice husk was assessed for nickel adsorption from aqueous solutions. The effects of pH, contact time, sorbent dose, initial metal ion concentration and temperature on the uptake of nickel were studied in batch process. The removal of nickel was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. The sorption data has been correlated with Langmuir, Freundlich and Dubinin-Radush kevich (D-R) adsorption models. It was found that Freundlich and Langmuir isotherms fitted well to the data. Maximum nickel removal was observed at pH 6.0. The efficiency of rice husk for nickel removal was 51.8% for dilute solutions at 20 g L-1 adsorbent dose. FTIR, SEM and EDAX were recorded before and after adsorption to explore the number and position of the functional groups available for nickel binding on to the studied adsorbent and changes in surface morphology and elemental constitution of the adsorbent. Pseudo-second order model explains the nickel kinetics more effectively. Reusability of the adsorbent was examined by desorption in which HCl eluted 78.93% nickel. The results revealed that nickel is considerably adsorbed on rice husk and it could be and economic method for the removal of nickel from aqueous solutions.

Tourist Awareness of Environmental and Recreational Behaviors at the Guandu Wetland, North Taiwan

The aim of this study is to discuss the relationship between tourist awareness of environmental issues and their own recreational behaviors in the Taipei Guandu Wetland. A total of 392 questionnaires were gathered for data analysis using descriptive statistics, t-testing, one-way analysis of variance (ANOVA) and least significant difference (LSD) post hoc comparisons. The results showed that most of the visitors there enjoying the beautiful scenery are 21 to 30 years old with a college education. The means and standard deviations indicate that tourists express a positive degree of cognition of environmental issues and recreational behaviors. They suggest that polluting the environment is harmful to the natural ecosystem and that the natural resources of ecotourism are fragile, as well as expressing a high degree of recognition of the need to protect wetlands. Most of respondents are cognizant of the regulations proposed by the Guandu Wetland administration which asks that users exercise self-control and follow recommended guidelines when traveling the wetland. There were significant differences in the degree of cognition related to the variables of age, number of visits and reasons for visiting. We found that most respondents with relatively high levels of education would like to learn more about the wetland and are supportive of its conservation.

A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation

In this paper, a novel deinterlacing algorithm is proposed. The proposed algorithm approximates the distribution of the luminance into a polynomial function. Instead of using one polynomial function for all pixels, different polynomial functions are used for the uniform, texture, and directional edge regions. The function coefficients for each region are computed by matrix multiplications. Experimental results demonstrate that the proposed method performs better than the conventional algorithms.

Finite Element Analysis of Cooling Time and Residual Strains in Cold Spray Deposited Titanium Particles

In this article, using finite element analysis (FEA) and an X-ray diffractometer (XRD), cold-sprayed titanium particles on a steel substrate is investigated in term of cooling time and the development of residual strains. Three cooling-down models of sprayed particles after deposition stage are simulated and discussed: the first model (m1) considers conduction effect to the substrate only, the second model (m2) considers both conduction as well as convection effect to the environment, and the third model (m3) which is the same as the second model but with the substrate heated to a near particle temperature before spraying. Thereafter, residual strains developed in the third model is compared with the experimental measurement of residual strains, which involved a Bruker D8 Advance Diffractometer using CuKa radiation (40kV, 40mA) monochromatised with a graphite sample monochromator. For deposition conditions of this study, a good correlation was found to exist between the FEA results and XRD measurements of residual strains.

Simulation and Design of the Geometric Characteristics of the Oscillatory Thermal Cycler

Since polymerase chain reaction (PCR) has been invented, it has emerged as a powerful tool in genetic analysis. The PCR products are closely linked with thermal cycles. Therefore, to reduce the reaction time and make temperature distribution uniform in the reaction chamber, a novel oscillatory thermal cycler is designed. The sample is placed in a fixed chamber, and three constant isothermal zones are established and lined in the system. The sample is oscillated and contacted with three different isothermal zones to complete thermal cycles. This study presents the design of the geometric characteristics of the chamber. The commercial software CFD-ACE+TM is utilized to investigate the influences of various materials, heating times, chamber volumes, and moving speed of the chamber on the temperature distributions inside the chamber. The chamber moves at a specific velocity and the boundary conditions with time variations are related to the moving speed. Whereas the chamber moves, the boundary is specified at the conditions of the convection or the uniform temperature. The user subroutines compiled by the FORTRAN language are used to make the numerical results realistically. Results show that the reaction chamber with a rectangular prism is heated on six faces; the effects of various moving speeds of the chamber on the temperature distributions are examined. Regarding to the temperature profiles and the standard deviation of the temperature at the Y-cut cross section, the non-uniform temperature inside chamber is found as the moving speed is larger than 0.01 m/s. By reducing the heating faces to four, the standard deviation of the temperature of the reaction chamber is under 1.4×10-3K with the range of velocities between 0.0001 m/s and 1 m/s. The nature convective boundary conditions are set at all boundaries while the chamber moves between two heaters, the effects of various moving velocities of the chamber on the temperature distributions are negligible at the assigned time duration.

Combined Beamforming and Channel Estimation in WCDMA Communication Systems

We address the problem of joint beamforming and multipath channel parameters estimation in Wideband Code Division Multiple Access (WCDMA) communication systems that employ Multiple-Access Interference (MAI) suppression techniques in the uplink (from mobile to base station). Most of the existing schemes rely on time multiplex a training sequence with the user data. In WCDMA, the channel parameters can also be estimated from a code multiplexed common pilot channel (CPICH) that could be corrupted by strong interference resulting in a bad estimate. In this paper, we present new methods to combine interference suppression together with channel estimation when using multiple receiving antennas by using adaptive signal processing techniques. Computer simulation is used to compare between the proposed methods and the existing conventional estimation techniques.

Communicative Competence: Novice versus Professional Engineers' Perceptions

The notion of communicative competence has been deemed fuzzy in communication studies. This fuzziness has led to tensions among engineers across tenures in interpreting what constitutes communicative competence. The study seeks to investigate novice and professional engineers- understanding of the said notion in terms of two main elements of communicative competence: linguistic and rhetorical competence. Novice engineers are final year engineering students, whilst professional engineers represent engineers who have at least 5 years working experience. Novice and professional engineers were interviewed to gauge their perceptions on linguistic and rhetorical features deemed necessary to enhance communicative competence for the profession. Both groups indicated awareness and differences on the importance of the sub-sets of communicative competence, namely, rhetorical explanatory competence, linguistic oral immediacy competence, technical competence and meta-cognitive competence. Such differences, a possible attribute of the learning theory, inadvertently indicate sublime differences in the way novice and professional engineers perceive communicative competence.

Testing of DISAL D240 and D420 Ceramic Tool Materials with an Interrupted Cut Simulator

This paper presents a solution for ceramic cutting tools availability in interrupted machining. Experiments were performed on a special fixture – the interrupted cut simulator. This fixture was constructed at our Department of Machining and Assembly within the scope of a project by the Czech Science Foundation. The goals of the tests were to contribute to the wider usage of these cutting materials in machining, especially in interrupted machining. Through the centuries, producers of ceramic cutting tools have taken big steps forward. Namely, increasing durability in maintaining high levels of strength and hardness lends an advantage. Some producers of these materials advise cutting inserts for interrupted machining at the present time [1, 2].

Geochemistry of Tektites from Hainan Island and Northeast Thailand

Twenty seven tektites from the Wenchang area, Hainan province (south China) and five tektites from the Khon Kaen area (northeast Thailand) were analyzed for major and trace element contents and Rb-Sr isotopic compositions. All the samples studied are splash-form tektites. Tektites of this study are characterized by high SiO2 contents ranging from 71.95 to 74.07 wt% which is consistent with previously published analyses of Australasian tektites. The trace element ratios Ba/Rb (avg. 3.89), Th/Sm (avg. 2.40), Sm/Sc (avg. 0.45), Th/Sc (avg. 0.99) and the rare earth elements (REE) contents of tektites of this study are similar to the average upper continental crust. Based on the chemical composition, it is suggested that tektites in this study are derived from similar parental material and are similar to the post-Archean upper crustal rocks. The major and trace element abundances of tektites analyzed indicate that the parental material of tektites may be a terrestrial sedimentary deposit. The tektites from the Wenchang area, Hainan Island have high positive εSr(0) values-ranging from 184.5~196.5 which indicate that the parental material for these tektites have similar Sr isotopic compositions to old terrestrial sedimentary rocks and they were not dominantly derived from recent young sediments (such as soil or loess). Based on Rb-Sr isotopic data, it has been suggested by Blum (1992) [1]that the depositional age of sedimentary target materials is close to 170Ma (Jurassic). According to the model suggested by Ho and Chen (1996)[2], mixing calculations for various amounts and combinations of target rocks have been carried out. We consider that the best fit for tektites from the Wenchang area is a mixture of 47% shale, 23% sandstone, 25% greywacke and 5% quartzite, and the other tektites from Khon Kaen area is a mixture of 46% shale, 2% sandstone, 20% greywacke and 32% quartzite.

Dynamic Load Balancing in PVM Using Intelligent Application

This paper deals with dynamic load balancing using PVM. In distributed environment Load Balancing and Heterogeneity are very critical issues and needed to drill down in order to achieve the optimal results and efficiency. Various techniques are being used in order to distribute the load dynamically among different nodes and to deal with heterogeneity. These techniques are using different approaches where Process Migration is basic concept with different optimal flavors. But Process Migration is not an easy job, it impose lot of burden and processing effort in order to track each process in nodes. We will propose a dynamic load balancing technique in which application will intelligently balance the load among different nodes, resulting in efficient use of system and have no overheads of process migration. It would also provide a simple solution to problem of load balancing in heterogeneous environment.

Group Contribution Parameters for Nonrandom Lattice Fluid Equation of State involving COSMO-RS

Group contribution based models are widely used in industrial applications for its convenience and flexibility. Although a number of group contribution models have been proposed, there were certain limitations inherent to those models. Models based on group contribution excess Gibbs free energy are limited to low pressures and models based on equation of state (EOS) cannot properly describe highly nonideal mixtures including acids without introducing additional modification such as chemical theory. In the present study new a new approach derived from quantum chemistry have been used to calculate necessary EOS group interaction parameters. The COSMO-RS method, based on quantum mechanics, provides a reliable tool for fluid phase thermodynamics. Benefits of the group contribution EOS are the consistent extension to hydrogen-bonded mixtures and the capability to predict polymer-solvent equilibria up to high pressures. The authors are confident that with a sufficient parameter matrix the performance of the lattice EOS can be improved significantly.

Knowledge, Perceptions and Acceptability to Strengthening Adolescents’ Sexual and Reproductive Health Education amongst Secondary Schools in Gulu District

Adolescents in Northern Uganda are at risk of teenage pregnancies, unsafe abortions and sexually transmitted infections (STIs). There is silence on sex both at home and school. This cross sectional descriptive analytical study interviews a random sample of 827 students and 13 teachers on knowledge, perception and acceptability to a comprehensive adolescent sexual and reproductive health education in “O” and “A” level secondary schools in Gulu District. Quantitative data was analyzed using SPSS 16.0. Directed content analysis of themes of transcribed qualitative data was conducted manually for common codes, sub-categories and categories. Of the 827 students; 54.3% (449) reported being in a sexual relationship especially those aged 15-17 years. Majority 96.1% (807) supported the teaching of a comprehensive ASRHE, citing no negative impact 71.5% (601). Majority 81.6% (686) agreed that such education could help prevention of STIs, abortions and teenage pregnancies, and that it should be taught by health workers 69.0% (580). Majority 76.6% (203) reported that ASRHE was not currently being taught in their schools. Students had low knowledge levels and misconceptions about ASRHE. ASRHE was highly acceptable though not being emphasized; its success in school settings requires multidisciplinary culturally sensitive approaches amongst which health workers should be frontiers.

Is China Replacing US in the International Monetary System?

The wisest economic decision of United States in the 20th century was establishing the favorable international monetary system, and capturing the leadership position in it. This decision gave economic hegemony to the US for the next more than 7 decades. The continuation of this hegemony till the next decade seems difficult as the US economy is under continuous streams of recessions since 2007. On the other hand, Chinese economy is progressing with a very fast speed and is estimated to pass the US economy till 2025, in various aspects. Will the US be able to continue its leadership in the IMS? Will China replace US in the international monetary system? The answers to these questions have been explored by comparing the economic competitiveness of US and China, with respect to each other. The paper concludes that the change in global economic environment will compel US to share the leadership of international monetary system with China. This sharing will solve most problems of the current IMS, but will also birth some new problems.

A Parallel Quadtree Approach for Image Compression using Wavelets

Wavelet transforms are multiresolution decompositions that can be used to analyze signals and images. Image compression is one of major applications of wavelet transforms in image processing. It is considered as one of the most powerful methods that provides a high compression ratio. However, its implementation is very time-consuming. At the other hand, parallel computing technologies are an efficient method for image compression using wavelets. In this paper, we propose a parallel wavelet compression algorithm based on quadtrees. We implement the algorithm using MatlabMPI (a parallel, message passing version of Matlab), and compute its isoefficiency function, and show that it is scalable. Our experimental results confirm the efficiency of the algorithm also.

Effect of Shell Dimensions on Buckling Behavior and Entropy Generation of Thin Welded Shells

Among all mechanical joining processes, welding has been employed for its advantage in design flexibility, cost saving, reduced overall weight and enhanced structural performance. However, for structures made of relatively thin components, welding can introduce significant buckling distortion which causes loss of dimensional control, structural integrity and increased fabrication costs. Different parameters can affect buckling behavior of welded thin structures such as, heat input, welding sequence, dimension of structure. In this work, a 3-D thermo elastic-viscoplastic finite element analysis technique is applied to evaluate the effect of shell dimensions on buckling behavior and entropy generation of welded thin shells. Also, in the present work, the approximated longitudinal transient stresses which produced in each time step, is applied to the 3D-eigenvalue analysis to ratify predicted buckling time and corresponding eigenmode. Besides, the possibility of buckling prediction by entropy generation at each time is investigated and it is found that one can predict time of buckling with drawing entropy generation versus out of plane deformation. The results of finite element analysis show that the length, span and thickness of welded thin shells affect the number of local buckling, mode shape of global buckling and post-buckling behavior of welded thin shells.

Wasp Venom Peptides may play a role in the Pathogenesis of Acute Disseminated Encephalomyelitis in Humans: A Structural Similarity Analysis

Acute disseminated encephalomyelitis (ADEM) has been reported to develop after a hymenoptera sting, but its pathogenesis is not known in detail. Myelin basic protein (MBP)- specific T cells have been detected in the blood of patients with ADEM, and a proportion of these patients develop multiple sclerosis (MS). In an attempt to understand the mechanisms underlying ADEM, molecular mimicry between hymenoptera venom peptides and the human immunodominant MBP peptide was scrutinized, based on the sequence and structural similarities, whether it was the root of the disease. The results suggest that the three wasp venom peptides have low sequence homology with the human immunodominant MBP residues 85-99. Structural similarity analysis among the three venom peptides and the MS-related HLA-DR2b (DRA, DRB1*1501)-associated immunodominant MHC binding/TCR contact residues 88-93, VVHFFK showed that hyaluronidase residues 7-12, phospholipase A1 residues 98-103, and antigen 5 residues 109-114 showed a high degree of similarity 83.3%, 100%, and 83.3% respectively. In conclusion, some wasp venom peptides, particularly phospholipase A1, may potentially act as the molecular motifs of the human 3HLA-DR2b-associated immunodominant MBP88-93, and possibly present a mechanism for induction of wasp sting-associated ADEM.

A Model of Network Security with Prevention Capability by Using Decoy Technique

This research work proposes a model of network security systems aiming to prevent production system in a data center from being attacked by intrusions. Conceptually, we introduce a decoy system as a part of the security system for luring intrusions, and apply network intrusion detection (NIDS), coupled with the decoy system to perform intrusion prevention. When NIDS detects an activity of intrusions, it will signal a redirection module to redirect all malicious traffics to attack the decoy system instead, and hence the production system is protected and safe. However, in a normal situation, traffic will be simply forwarded to the production system as usual. Furthermore, we assess the performance of the model with various bandwidths, packet sizes and inter-attack intervals (attacking frequencies).

Info-participation of the Disabled Using the Mixed Preference Data in Improving Their Travel Quality

Today, the preferences and participation of the TD groups such as the elderly and disabled is still lacking in decision-making of transportation planning, and their reactions to certain type of policies are not well known. Thus, a clear methodology is needed. This study aimed to develop a method to extract the preferences of the disabled to be used in the policy-making stage that can also guide to future estimations. The method utilizes the combination of cluster analysis and data filtering using the data of the Arao city (Japan). The method is a process that follows: defining the TD group by the cluster analysis tool, their travel preferences in tabular form from the household surveys by policy variableimpact pairs, zones, and by trip purposes, and the final outcome is the preference probabilities of the disabled. The preferences vary by trip purpose; for the work trips, accessibility and transit system quality policies with the accompanying impacts of modal shifts towards public mode use as well as the decreasing travel costs, and the trip rate increase; for the social trips, the same accessibility and transit system policies leading to the same mode shift impact, together with the travel quality policy area leading to trip rate increase. These results explain the policies to focus and can be used in scenario generation in models, or any other planning purpose as decision support tool.

Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network

A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.

Auto Classification for Search Intelligence

This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.