Effect of the Internet on Social Capital

Internet access is a vital part of the modern world and an important tool in the education of our children. It is present in schools, homes and even shopping malls. Mastering the use of the internet is likely to be an important skill for those entering the job markets of the future. An internet user can be anyone he or she wants to be in an online chat room, or play thrilling and challenging games against other players from all corners of the globe. It seems at present time (or near future) for many people relationships in the real world may be neglected as those in the virtual world increase in importance. Internet is provided a fast mode of transportation caused freedom from family bonds and mixing with different cultures and new communities. This research is an attempt to study effect of Internet on Social capital. For this purpose a survey technique on the sample size amounted 168 students of Payame Noor University of Kermanshah city in country of Iran were considered. Degree of social capital is moderate. With the help of the Multi-variable Regression, variables of Iranian message attractive, Interest to internet with effect of positive and variable Creating a cordial atmosphere with negative effect be significant.

Performance Analysis of a WiMax/Wi-Fi System Whilst Streaming a Video Conference Application

WiMAX and Wi-Fi are considered as the promising broadband access solutions for wireless MAN’s and LANs, respectively. In the recent works WiMAX is considered suitable as a backhaul service to connect multiple dispersed Wi-Fi ‘hotspots’. Hence a new integrated WiMAX/Wi-Fi architecture has been proposed in literatures. In this paper the performance of an integrated WiMAX/Wi-Fi network has been investigated by streaming a video conference application. The difference in performance between the two protocols is compared with respect to video conferencing. The Heterogeneous network was simulated in the OPNET simulator.

Auto Tuning PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant

An optimal control of Reverse Osmosis (RO) plant is studied in this paper utilizing the auto tuning concept in conjunction with PID controller. A control scheme composing an auto tuning stochastic technique based on an improved Genetic Algorithm (GA) is proposed. For better evaluation of the process in GA, objective function defined newly in sense of root mean square error has been used. Also in order to achieve better performance of GA, more pureness and longer period of random number generation in operation are sought. The main improvement is made by replacing the uniform distribution random number generator in conventional GA technique to newly designed hybrid random generator composed of Cauchy distribution and linear congruential generator, which provides independent and different random numbers at each individual steps in Genetic operation. The performance of newly proposed GA tuned controller is compared with those of conventional ones via simulation.

Binary Phase-Only Filter Watermarking with Quantized Embedding

The binary phase-only filter digital watermarking embeds the phase information of the discrete Fourier transform of the image into the corresponding magnitudes for better image authentication. The paper proposed an approach of how to implement watermark embedding by quantizing the magnitude, with discussing how to regulate the quantization steps based on the frequencies of the magnitude coefficients of the embedded watermark, and how to embed the watermark at low frequency quantization. The theoretical analysis and simulation results show that algorithm flexibility, security, watermark imperceptibility and detection performance of the binary phase-only filter digital watermarking can be effectively improved with quantization based watermark embedding, and the robustness against JPEG compression will also be increased to some extent.

Effect of Flaying Capacitors on Improving the 4 Level Three-Cell Inverter

With the rapid advanced of technology, the industrial processes become increasingly demanding, from the point of view, power quality and controllability. The advent of multi levels inverters responds partially to these requirements. But actually, the new generation of multi-cells inverters permits to reach more performances, since, it offers more voltage levels. The disadvantage in the increase of voltage levels by the number of cells in cascades is on account of series igbts synchronisation loss, from where, a limitation of cells in cascade to 4. Regarding to these constraints, a new topology is proposed in this paper, which increases the voltage levels of the three-cell inverter from 4 to 8; with the same number of igbts, and using less stored energy in the flaying capacitors. The details of operation and modelling of this new inverter structure are also presented, then tested thanks to a three phase induction motor. KeywordsFlaying capacitors, Multi-cells inverter, pwm, switchers, modelling.

Dynamic Modeling of Underplateform Damper used in Turbomachinery

The present work deals with the structural analysis of turbine blades and modeling of turbine blades. A common failure mode for turbine machines is high cycle of fatigue of compressor and turbine blades due to high dynamic stresses caused by blade vibration and resonance within the operation range of the machinery. In this work, proper damping system will be analyzed to reduce the vibrating blade. The main focus of the work is the modeling of under platform damper to evaluate the dynamic analysis of turbine-blade vibrations. The system is analyzed using Bond graph technique. Bond graph is one of the most convenient ways to represent a system from the physical aspect in foreground. It has advantage of putting together multi-energy domains of a system in a single representation in a unified manner. The bond graph model of dry friction damper is simulated on SYMBOLS-shakti® software. In this work, the blades are modeled as Timoshenko beam. Blade Vibrations under different working conditions are being analyzed numerically.

A Systems Modeling Approach to Support Environmentally Sustainable Business Development in Manufacturing SMEs

Small and Medium Sized Enterprises (SMEs) play an important role in many economies. In New Zealand, for example, 97% of all manufacturing companies employ less than 100 staff, and generate the predominant part of this industry sector-s economic output. Manufacturing SMEs as a group also have a significant impact on the environment. This situation is similar in many developed economies, including the European Union. Sustainable economic development therefore needs to strongly consider the role of manufacturing SMEs, who generally find it challenging to move towards more environmentally friendly business practices. This paper presents a systems thinking approach to modelling and understanding the factors which have an influence on the successful uptake of environmental practices in small and medium sized manufacturing companies. It presents a number of causal loop diagrams which have been developed based on primary action research, and a thorough understanding of the literature in this area. The systems thinking model provides the basis for further development of a strategic framework for the successful uptake of environmental innovation in manufacturing SMEs.

Optical Limiting Characteristics of Core-Shell Nanoparticles

TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.

Java Based Automatic Curriculum Generator for Children with Trisomy 21

Early Intervention Program (EIP) is required to improve the overall development of children with Trisomy 21 (Down syndrome). In order to help trainer and parent in the implementation of EIP, a support system has been developed. The support system is able to screen data automatically, store and analyze data, generate individual EIP (curriculum) with optimal training duration and to generate training automatically. The system consists of hardware and software where the software has been implemented using Java language and Linux Fedora. The software has been tested to ensure the functionality and reliability. The prototype has been also tested in Down syndrome centers. Test result shows that the system is reliable to be used for generation of an individual curriculum which includes the training program to improve the motor, cognitive, and combination abilities of Down syndrome children under 6 years.

Quantitative Estimation of Periodicities in Lyari River Flow Routing

The hydrologic time series data display periodic structure and periodic autoregressive process receives considerable attention in modeling of such series. In this communication long term record of monthly waste flow of Lyari river is utilized to quantify by using PAR modeling technique. The parameters of model are estimated by using Frances & Paap methodology. This study shows that periodic autoregressive model of order 2 is the most parsimonious model for assessing periodicity in waste flow of the river. A careful statistical analysis of residuals of PAR (2) model is used for establishing goodness of fit. The forecast by using proposed model confirms significance and effectiveness of the model.

Weak Measurement Theory for Discrete Scales

With the increasing spread of computers and the internet among culturally, linguistically and geographically diverse communities, issues of internationalization and localization and becoming increasingly important. For some of the issues such as different scales for length and temperature, there is a well-developed measurement theory. For others such as date formats no such theory will be possible. This paper fills a gap by developing a measurement theory for a class of scales previously overlooked, based on discrete and interval-valued scales such as spanner and shoe sizes. The paper gives a theoretical foundation for a class of data representation problems.

Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians

In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.

A Comparison Study of the Removal of Selected Pharmaceuticals in Waters by Chemical Oxidation Treatments

The degradation of selected pharmaceuticals in some water matrices was studied by using several chemical treatments. The pharmaceuticals selected were the beta-blocker metoprolol, the nonsteroidal anti-inflammatory naproxen, the antibiotic amoxicillin, and the analgesic phenacetin; and their degradations were conducted by using UV radiation alone, ozone, Fenton-s reagent, Fenton-like system, photo-Fenton system, and combinations of UV radiation and ozone with H2O2, TiO2, Fe(II), and Fe(III). The water matrices, in addition to ultra-pure water, were a reservoir water, a groundwater, and two secondary effluents from two municipal WWTP. The results reveal that the presence of any second oxidant enhanced the oxidation rates, with the systems UV/TiO2 and O3/TiO2 providing the highest degradation rates. It is also observed in most of the investigated oxidation systems that the degradation rate followed the sequence: amoxicillin > naproxen > metoprolol > phenacetin. Lower rates were obtained with the pharmaceuticals dissolved in natural waters and secondary effluents due to the organic matter present which consume some amounts of the oxidant agents.

Solid-State Bioconversion of Pineapple Residues into Kojic Acid by Aspergillus flavus: A Prospective Study

Kojic acid is an organic acid that is widely used as an ingredient for dermatological products, precursor for flavor enhancer and also as anti-inflammatory drug. The present study was undertaken to test the feasibility of pineapple residues as substrate for kojic acid production by Aspergillus flavus Link 44-1 via solid-state fermentation. The effect of initial moisture content, pH and incubation time on kojic acid fermentation was investigated. The best initial moisture content for kojic acid production from pineapple residues was observed at 70% (v/w) whereas initial culture pH 2.5 was identified to give high production of kojic acid. The optimal range of incubation time was identified between 8 and 14 days of incubation which corresponded to highest range of kojic acid produced. The results from this study pronounce the promising usability of pineapple residues as alternative substrate for kojic acid production by A. flavus Link 44-1.

Industrial Applications of Laser Engraving: Influence of the Process Parameters on Machined Surface Quality

Laser engraving is a manufacturing method for those applications where previously Electrical Discharge Machining (EDM) was the only choice. Laser engraving technology removes material layer-by-layer and the thickness of layers is usually in the range of few microns. The aim of the present work is to investigate the influence of the process parameters on the surface quality when machined by laser engraving. The examined parameters were: the pulse frequency, the beam speed and the layer thickness. The surface quality was determined by the surface roughness for every set of parameters. Experimental results on Al7075 material showed that the surface roughness strictly depends on the process parameters used.

The Use of Minor Setups in an EPQ Model with Constrained Production Period Length

Extensive research has been devoted to economic production quantity (EPQ) problem. However, no attention has been paid to problems where production period length is constrained. In this paper, we address the problem of deciding the optimal production quantity and the number of minor setups within each cycle, in which, production period length is constrained but a minor setup is possible for pass the constraint. A mathematical model is developed and Iterated Local Search (ILS) is proposed to solve this problem. Finally, solution procedure illustrated with a numerical example and results are analyzed.

Estimation of the Park-Ang Damage Index for Floating Column Building with Infill Wall

Buildings with floating column are highly undesirable built in seismically active areas. Many urban multi-storey buildings today have floating column buildings which are adopted to accommodate parking at ground floor or reception lobbies in the first storey. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path; any deviation or discontinuity in this load transfer path results in poor performance of the building. Floating column buildings are severely damaged during earthquake. Damage on this structure can be reduce by taking the effect of infill wall. This paper presents the effect of stiffness of infill wall to the damage occurred in floating column building when ground shakes. Modelling and analysis are carried out by non linear analysis programme IDARC-2D. Damage occurred in beams, columns, storey are studied by formulating modified Park & Ang model to evaluate damage indices. Overall structural damage indices in buildings due to shaking of ground are also obtained. Dynamic response parameters i.e. lateral floor displacement, storey drift, time period, base shear of buildings are obtained and results are compared with the ordinary moment resisting frame buildings. Formation of cracks, yield, plastic hinge, are also observed during analysis.

Development and Evaluation of a Dynamic Cardiac Phantom for use in Nuclear Medicine

The aim of this study was to develop a dynamic cardiac phantom for quality control in myocardial scintigraphy. The dynamic heart phantom constructed only contained the left ventricle, made of elastic material (latex), comprising two cavities: one internal and one external. The data showed a non-significant variation in the values of left ventricular ejection fraction (LVEF) obtained by varying the heart rate. It was also possible to evaluate the ejection fraction (LVEF) through different arrays of image acquisition and to perform an intercomparison of LVEF by two different scintillation cameras. The results of the quality control tests were satisfactory, showing that they can be used as parameters in future assessments. The new dynamic heart phantom was demonstrated to be effective for use in LVEF measurements. Therefore, the new heart simulator is useful for the quality control of scintigraphic cameras.

Evaluation of University Technology Malaysia on Campus Transport Access Management

Access Management is the proactive management of vehicular access points to land parcels adjacent to all manner of roadways. Good access management promotes safe and efficient use of the transportation network. This study attempts to utilize archived data from the University Technology of Malaysia on-campus area to assess the accuracy with which access management display some benefits. Results show that usage of access management reduces delay and fewer crashes. Clustered development can improve walking, cycling and transit travel, reduce parking requirements and improve emergency responses. Effective Access Management planning can also reduce total roadway facility costs by reducing the number of driveways and intersections. At the end after presenting recommendations some of the travel impact, and benefits that can be derived if these suggestions are implemented have been summarized with the related comments.

Worker Behavior Interpretation for Flexible Production

This paper addresses the problem of recognizing and interpreting the behavior of human workers in industrial environments for the purpose of integrating humans in software controlled manufacturing environments. In this work we propose a generic concept in order to derive solutions for task-related manual production applications. Thus, we are able to use a versatile concept providing flexible components and being less restricted to a specific problem or application. We instantiate our concept in a spot welding scenario in which the behavior of a human worker is interpreted when performing a welding task with a hand welding gun. We acquire signals from inertial sensors, video cameras and triggers and recognize atomic actions by using pose data from a marker based video tracking system and movement data from inertial sensors. Recognized atomic actions are analyzed on a higher evaluation level by a finite state machine.