Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

The Enhancement of Target Localization Using Ship-Borne Electro-Optical Stabilized Platform

Electro-optical (EO) stabilized platforms have been widely used for surveillance and reconnaissance on various types of vehicles, from surface ships to unmanned air vehicles (UAVs). EO stabilized platforms usually consist of an assembly of structure, bearings, and motors called gimbals in which a gyroscope is installed. EO elements such as a CCD camera and IR camera, are mounted to a gimbal, which has a range of motion in elevation and azimuth and can designate and track a target. In addition, a laser range finder (LRF) can be added to the gimbal in order to acquire the precise slant range from the platform to the target. Recently, a versatile functionality of target localization is needed in order to cooperate with the weapon systems that are mounted on the same platform. The target information, such as its location or velocity, needed to be more accurate. The accuracy of the target information depends on diverse component errors and alignment errors of each component. Specially, the type of moving platform can affect the accuracy of the target information. In the case of flying platforms, or UAVs, the target location error can be increased with altitude so it is important to measure altitude as precisely as possible. In the case of surface ships, target location error can be increased with obliqueness of the elevation angle of the gimbal since the altitude of the EO stabilized platform is supposed to be relatively low. The farther the slant ranges from the surface ship to the target, the more extreme the obliqueness of the elevation angle. This can hamper the precise acquisition of the target information. So far, there have been many studies on EO stabilized platforms of flying vehicles. However, few researchers have focused on ship-borne EO stabilized platforms of the surface ship. In this paper, we deal with a target localization method when an EO stabilized platform is located on the mast of a surface ship. Especially, we need to overcome the limitation caused by the obliqueness of the elevation angle of the gimbal. We introduce a well-known approach for target localization using Unscented Kalman Filter (UKF) and present the problem definition showing the above-mentioned limitation. Finally, we want to show the effectiveness of the approach that will be demonstrated through computer simulations.

An Investigation on Overstrength Factor (Ω) of Reinforced Concrete Buildings in Turkish Earthquake Draft Code (TEC-2016)

Overstrength factor is an important parameter of load reduction factor. In this research, the overstrength factor (Ω) of reinforced concrete (RC) buildings and the parameters of Ω in TEC-2016 draft version have been explored. For this aim, 48 RC buildings have been modeled according to the current seismic code TEC-2007 and Turkish Building Code-500-2000 criteria. After modelling step, nonlinear static pushover analyses have been applied to these buildings by using TEC-2007 Section 7. After the nonlinear pushover analyses, capacity curves (lateral load-lateral top displacement curves) have been plotted for 48 RC buildings. Using capacity curves, overstrength factors (Ω) have been derived for each building. The obtained overstrength factor (Ω) values have been compared with TEC-2016 values for related building types, and the results have been interpreted. According to the obtained values from the study, overstrength factor (Ω) given in TEC-2016 draft code is found quite suitable.

H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Modal Analysis for Study of Minor Historical Architecture

Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.

Research on the Problems of Housing Prices in Qingdao from a Macro Perspective

Qingdao is a seaside city. Taking into account the characteristics of Qingdao, this article established a multiple linear regression model to analyze the impact of macroeconomic factors on housing prices. We used stepwise regression method to make multiple linear regression analysis, and made statistical analysis of F test values and T test values. According to the analysis results, the model is continuously optimized. Finally, this article obtained the multiple linear regression equation and the influencing factors, and the reliability of the model was verified by F test and T test.

Socio-Economic Determinants of Physical Activity of Non-Manual Workers, Including the Early Senior Group, from the City of Wroclaw in Poland

Physical activity as a part of people’s everyday life reduces the risk of many diseases, including those induced by lifestyle, e.g. obesity, type 2 diabetes, osteoporosis, coronary heart disease, degenerative arthritis, and certain types of cancer. That refers particularly to professionally active people, including the early senior group working on non-manual positions. The aim of the study is to evaluate the relationship between physical activity and the socio-economic status of non-manual workers from Wroclaw—one of the biggest cities in Poland, a model setting for such investigations in this part of Europe. The crucial problem in the research is to find out the percentage of respondents who meet the health-related recommendations of the World Health Organization (WHO) concerning the volume, frequency, and intensity of physical activity, as well as to establish if the most important socio-economic factors, such as gender, age, education, marital status, per capita income, savings and debt, determine the compliance with the WHO physical activity recommendations. During the research, conducted in 2013, 1,170 people (611 women and 559 men) aged 21–60 years were examined. A diagnostic poll method was applied to collect the data. Physical activity was measured with the use of the short form of the International Physical Activity Questionnaire with extended socio-demographic questions, i.e. concerning gender, age, education, marital status, income, savings or debts. To evaluate the relationship between physical activity and selected socio-economic factors, logistic regression was used (odds ratio statistics). Statistical inference was conducted on the adopted ex ante probability level of p

Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

The Development and Future of Hong Kong Typography

Language usage and typography in Hong Kong are unique, as can be seen clearly on the streets of the city. In contrast to many other parts of the world, where there is only one language, in Hong Kong many signs and billboards display two languages: Chinese and English. The language usage on signage, fonts and types used, and the designs in magazines and advertisements all demonstrate the unique features of Hong Kong typographic design, which reflect the multicultural nature of Hong Kong society. This study is the first step in investigating the nature and development of Hong Kong typography. The preliminary research explored how the historical development of Hong Kong is reflected in its unique typography. Following a review of historical development, a quantitative study was designed: Local Hong Kong participants were invited to provide input on what makes the Hong Kong typographic style unique. Their input was collected and analyzed. This provided us with information about the characteristic criteria and features of Hong Kong typography, as recognized by the local people. The most significant typographic designs in Hong Kong were then investigated and the influence of Chinese and other cultures on Hong Kong typography was assessed. The research results provide an indication to local designers on how they can strengthen local design outcomes and promote the values and culture of their mother town.

Failure Modes and Bearing Capacity Estimation for Strip Foundations in C-ɸ Soils: A Numerical Study

In this study, typical c-ɸ soils subjected to loadings were assessed with a view to understand the general stress distribution and settlement behaviour of the soils under drained conditions. Numerical estimations of the non-dimensional bearing capacity factors, Nq and Nγ for varied angles of friction in the soil mass were obtained using PLAXIS. Ultimate bearing capacity values over a Ф range of 0-30 degrees were also computed and compared with analytical results obtained from the traditional simplified uncoupled approach of Terzaghi and Meyerhof. Results from the numerical study agree well with theoretical findings.

Augmented Reality and Storytelling in Cities: An Application to Lisbon Street Art

Cities are spaces of memory with several zones (parts of cities) with their own history and cultural events. Today, cities are also marked by a form of intangible cultural heritage like street art, which creates a visual culture based on the process of reflection about the city and the world. To link these realities and create a personal user interaction with this cultural heritage it is important to capture the story and aesthetics, and find alternatives to immerse the user in these spaces of memory. To that end, this article presents a project which combines Augmented Reality technologies and concepts of Transmedia Storytelling applied to Lisbon City, using Street Art artifacts as markers in a framework of digital media-art.

Obese and Overweight Women and Public Health Issues in Hillah City, Iraq

In both developed and developing countries, obesity among women is increasing, but in different patterns and at very different speeds. It may have a negative effect on health, leading to reduced life expectancy and/or increased health problems. This research studied the age distribution among obese women, the types of overweight and obesity, and the extent of the problem of overweight/obesity and the obesity etiological factors among women in Hillah city in central Iraq. A total of 322 overweight and obese women were included in the study, those women were randomly selected. The Body Mass Index was used as indicator for overweight/ obesity. The incidence of overweight/obesity among age groups were estimated, the etiology factors included genetic, environmental, genetic/environmental and endocrine disease. The overweight and obese women were screened for incidence of infection and/or diseases. The study found that the prevalence of 322 overweight and obese women in Hillah city in central Iraq was 19.25% and 80.78%, respectively. The obese women types were recorded based on BMI and WHO classification as class-1 obesity (29.81%), class-2 obesity (24.22%) and class-3 obesity (26.70%), the result was discrepancy non-significant, P value < 0.05. The incidence of overweight in women was high among those aged 20-29 years (90.32%), 6.45% aged 30-39 years old and 3.22% among ≥ 60 years old, while the incidence of obesity was 20.38% for those in the age group 20-29 years, 17.30% were 30-39 years, 23.84% were 40-49 years, 16.92% were 50-59 years group and 21.53% were ≥ 60 years age group. These results confirm that the age can be considered as a significant factor for obesity types (P value < 0.0001). The result also showed that the both genetic factors and environmental factors were responsible for incidents of overweight or obesity (84.78%) p value < 0.0001. The results also recorded cases of different repeated infections (skin infection, recurrent UTI and influenza), cancer, gallstones, high blood pressure, type 2 diabetes, and infertility. Weight stigma and bias generally refers to negative attitudes; Obesity can affect quality of life, and the results of this study recorded depression among overweight or obese women. This can lead to sexual problems, shame and guilt, social isolation and reduced work performance. Overweight and Obesity are real problems among women of all age groups and is associated with the risk of diseases and infection and negatively affects quality of life. This result warrants further studies into the prevalence of obesity among women in Hillah City in central Iraq and the immune response of obese women.

Sleep Scheduling Schemes Based on Location of Mobile User in Sensor-Cloud

The mobile cloud computing (MCC) with wireless sensor networks (WSNs) technology gets more attraction by research scholars because its combines the sensors data gathering ability with the cloud data processing capacity. This approach overcomes the limitation of data storage capacity and computational ability of sensor nodes. Finally, the stored data are sent to the mobile users when the user sends the request. The most of the integrated sensor-cloud schemes fail to observe the following criteria: 1) The mobile users request the specific data to the cloud based on their present location. 2) Power consumption since most of them are equipped with non-rechargeable batteries. Mostly, the sensors are deployed in hazardous and remote areas. This paper focuses on above observations and introduces an approach known as collaborative location-based sleep scheduling (CLSS) scheme. Both awake and asleep status of each sensor node is dynamically devised by schedulers and the scheduling is done purely based on the of mobile users’ current location; in this manner, large amount of energy consumption is minimized at WSN. CLSS work depends on two different methods; CLSS1 scheme provides lower energy consumption and CLSS2 provides the scalability and robustness of the integrated WSN.

Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames

The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.

Ingenious Use of Hypo Sludge in M25 Concrete

Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.

Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder

In this paper, the mechanism of stratified liquids’ mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids.

Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System

Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.

Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Exploring Pisa Monuments Using Mobile Augmented Reality

Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user’s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments’ 3D map database and the navigation algorithm.