Aerodynamic Analysis of a Frontal Deflector for Vehicles

This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.

Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Fuzzy Inference System (FIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, superplasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.

Information Retrieval: A Comparative Study of Textual Indexing Using an Oriented Object Database (db4o) and the Inverted File

The growth in the volume of text data such as books and articles in libraries for centuries has imposed to establish effective mechanisms to locate them. Early techniques such as abstraction, indexing and the use of classification categories have marked the birth of a new field of research called "Information Retrieval". Information Retrieval (IR) can be defined as the task of defining models and systems whose purpose is to facilitate access to a set of documents in electronic form (corpus) to allow a user to find the relevant ones for him, that is to say, the contents which matches with the information needs of the user. Most of the models of information retrieval use a specific data structure to index a corpus which is called "inverted file" or "reverse index". This inverted file collects information on all terms over the corpus documents specifying the identifiers of documents that contain the term in question, the frequency of each term in the documents of the corpus, the positions of the occurrences of the word... In this paper we use an oriented object database (db4o) instead of the inverted file, that is to say, instead to search a term in the inverted file, we will search it in the db4o database. The purpose of this work is to make a comparative study to see if the oriented object databases may be competing for the inverse index in terms of access speed and resource consumption using a large volume of data.

Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Forecasting Rainfall in Thailand: A Case Study of Nakhon Ratchasima Province

In this paper, we study the rainfall using a time series for weather stations in Nakhon Ratchasima province in Thailand by various statistical methods to enable us to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. The ARIMA and Holt-Winter models were built on the basis of exponential smoothing. All the models proved to be adequate. Therefore it is possible to give information that can help decision makers establish strategies for the proper planning of agriculture, drainage systems and other water resource applications in Nakhon Ratchasima province. We obtained the best performance from forecasting with the ARIMA Model(1,0,1)(1,0,1)12.

A Collaborative Platform for Multilingual Ontology Development

Ontologies provide a common understanding of a specific domain of interest that can be communicated between people and used as background knowledge for automated reasoning in a wide range of applications. In this paper, we address the design of multilingual ontologies following well-defined knowledge engineering methodologies with the support of novel collaborative development approaches. In particular, we present a collaborative platform which allows ontologies to be developed incrementally in multiple languages. This is made possible via an appropriate mapping between language independent concepts and one lexicalization per language (or a lexical gap in case such lexicalization does not exist). The collaborative platform has been designed to support the development of the Universal Knowledge Core, a multilingual ontology currently in English, Italian, Chinese, Mongolian, Hindi and Bangladeshi. Its design follows a workflow-based development methodology that models resources as a set of collaborative objects and assigns customizable workflows to build and maintain each collaborative object in a community driven manner, with extensive support of modern web 2.0 social and collaborative features.

Models and Metamodels for Computer-Assisted Natural Language Grammar Learning

The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.

Financial Information and Collective Bargaining: Conflicting or Complementing?

The research conducted in early seventies apparently assumed the existence of a universal decision model for union negotiators and furthermore tended to regard financial information as a ‘neutral’ input into a rational decision making process. However, research in the eighties began to question the neutrality of financial information as an input in collective bargaining rather viewing it as a potentially effective means for controlling the labour force. Furthermore, this later research also started challenging the simplistic assumptions relating particularly to union objectives which have underpinned the earlier search for universal union decision models. Despite the above developments there seems to be a dearth of studies in developing countries concerning the use of financial information in collective bargaining. This paper seeks to begin to remedy this deficiency. Utilising a case study approach based on two enterprises, one in the public sector and the other a multinational, the universal decision model is rejected and it is argued that the decision whether or not to use financial information is a contingent one and such a contingency is largely defined by the context and environment in which both union and management negotiators work. An attempt is also made to identify the factors constraining as well as promoting the use of financial information in collective bargaining, these being regarded as unique to the organisations within which the case studies are conducted.

Removal of Tartrazine Dye form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite

In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.

A Systemic Maturity Model

Maturity models, used descriptively to explain changes in reality or normatively to guide managers to make interventions to make organizations more effective and efficient, are based on the principles of statistical quality control and PDCA continuous improvement (Plan, Do, Check, Act). Some frameworks developed over the concept of maturity models include COBIT, CMM, and ITIL. This paper presents some limitations of traditional maturity models, most of them related to the mechanistic and reductionist principles over which those models are built. As systems theory helps the understanding of the dynamics of organizations and organizational change, the development of a systemic maturity model can help to overcome some of those limitations. This document proposes a systemic maturity model, based on a systemic conceptualization of organizations, focused on the study of the functioning of the parties, the relationships among them, and their behavior as a whole. The concept of maturity from the system theory perspective is conceptually defined as an emergent property of the organization, which arises as a result of the degree of alignment and integration of their processes. This concept is operationalized through a systemic function that measures the maturity of organizations, and finally validated by the measuring of maturity in some organizations. For its operationalization and validation, the model was applied to measure the maturity of organizational Governance, Risk and Compliance (GRC) processes.

Experimental Investigation on Tsunami Acting on Bridges

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Dynamic Amplification Factors of Some City Bridges

Paper presents a study about dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 prestressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicle passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and the bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge pavement in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values.

Automatic Generation of Ontology from Data Source Directed by Meta Models

Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.

Attribution Theory and Perceived Reliability of Cellphones for Teaching and Learning

The use of information and communication technologies such as computers, mobile phones and the Internet is becoming prevalent in today’s world; and it is facilitating access to a vast amount of data, services and applications for the improvement of people’s lives. However, this prevalence of ICTs is hampered by the problem of low income levels in developing countries to the point where people cannot timeously replace or repair their ICT devices when damaged or lost; and this problem serves as a motivation for this study whose aim is to examine the perceptions of teachers on the reliability of cellphones when used for teaching and learning purposes. The research objectives unfolding this aim are of two types: Objectives on the selection and design of theories and models, and objectives on the empirical testing of these theories and models. The first type of objectives is achieved using content analysis in an extensive literature survey: and the second type of objectives is achieved through a survey of high school teachers from the ILembe and UMgungundlovu districts in the KwaZulu-Natal province of South Africa. Data collected from this questionnaire based survey is analysed in SPSS using descriptive statistics and Pearson correlations after checking the reliability and validity of the questionnaires. The main hypothesis driving this study is that there is a relationship between the demographics and the attribution identity of teachers on one hand, and their perceptions on the reliability of cellphones on the other hand, as suggested by existing literature; except that attribution identities are considered in this study under three angles: intention, knowledge and ability, and action. The results of this study confirm that the perceptions of teachers on the reliability of cellphones for teaching and learning are affected by the school location of these teachers, and by their perceptions on learners’ cellphones usage intentions and actual use.

Phenomenological Ductile Fracture Criteria Applied to the Cutting Process

Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.

Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices

Drying behavior of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80°C) and ten sweet potato varieties sliced to 5mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27 - 6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.

Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact

A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheelrail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process.

Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the creditscoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.