Finding an Optimized Discriminate Function for Internet Application Recognition

Everyday the usages of the Internet increase and simply a world of the data become accessible. Network providers do not want to let the provided services to be used in harmful or terrorist affairs, so they used a variety of methods to protect the special regions from the harmful data. One of the most important methods is supposed to be the firewall. Firewall stops the transfer of such packets through several ways, but in some cases they do not use firewall because of its blind packet stopping, high process power needed and expensive prices. Here we have proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. So an administrator can alarm to the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Molar Excess Volumes and Excess Isentropic Compressibilities of Ternary Mixtures Containing 2-Pyrrolidinone

Molar excess Volumes, VE ijk and speeds of sound , uijk of 2-pyrrolidinone (i) + benzene or toluene (j) + ethanol (k) ternary mixture have been measured as a function of composition at 308.15 K. The observed speeds of sound data have been utilized to determine excess isentropic compressiblities, ( E S κ )ijk of ternary (i + j + k) mixtures. Molar excess volumes, VE ijk and excess isentropic compressibilities, ( E S κ )ijk data have fitted to the Redlich-Kister equation to calculate ternary adjustable parameters and standard deviations. The Moelywn-Huggins concept (Huggins in Polymer 12: 389-399, 1971) of connectivity between the surfaces of the constituents of binary mixtures has been extended to ternary mixtures (using the concept of a connectivity parameter of third degree of molecules, 3ξ , which inturn depends on its topology) to obtain an expression that describes well the measured VE ijk and ( E S κ )ijk data.

A New Method for Image Classification Based on Multi-level Neural Networks

In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.

Development of a Semantic Wiki-based Feature Library for the Extraction of Manufacturing Feature and Manufacturing Information

A manufacturing feature can be defined simply as a geometric shape and its manufacturing information to create the shape. In a feature-based process planning system, feature library that consists of pre-defined manufacturing features and the manufacturing information to create the shape of the features, plays an important role in the extraction of manufacturing features with their proper manufacturing information. However, to manage the manufacturing information flexibly, it is important to build a feature library that can be easily modified. In this paper, the implementation of Semantic Wiki for the development of the feature library is proposed.

Elastic-Plastic Transition in a Thin Rotating Disc with Inclusion

Stresses for the elastic-plastic transition and fully plastic state have been derived for a thin rotating disc with inclusion and results have been discussed numerically and depicted graphically. It has been observed that the rotating disc with inclusion and made of compressible material requires lesser angular speed to yield at the internal surface whereas it requires higher percentage increase in angular speed to become fully plastic as compare to disc made of incompressible material.

Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)

In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.

Packet Forwarding with Multiprotocol Label Switching

MultiProtocol Label Switching (MPLS) is an emerging technology that aims to address many of the existing issues associated with packet forwarding in today-s Internetworking environment. It provides a method of forwarding packets at a high rate of speed by combining the speed and performance of Layer 2 with the scalability and IP intelligence of Layer 3. In a traditional IP (Internet Protocol) routing network, a router analyzes the destination IP address contained in the packet header. The router independently determines the next hop for the packet using the destination IP address and the interior gateway protocol. This process is repeated at each hop to deliver the packet to its final destination. In contrast, in the MPLS forwarding paradigm routers on the edge of the network (label edge routers) attach labels to packets based on the forwarding Equivalence class (FEC). Packets are then forwarded through the MPLS domain, based on their associated FECs , through swapping the labels by routers in the core of the network called label switch routers. The act of simply swapping the label instead of referencing the IP header of the packet in the routing table at each hop provides a more efficient manner of forwarding packets, which in turn allows the opportunity for traffic to be forwarded at tremendous speeds and to have granular control over the path taken by a packet. This paper deals with the process of MPLS forwarding mechanism, implementation of MPLS datapath , and test results showing the performance comparison of MPLS and IP routing. The discussion will focus primarily on MPLS IP packet networks – by far the most common application of MPLS today.

A New Analytical Approach to Reconstruct Residual Stresses Due to Turning Process

A thin layer on the component surface can be found with high tensile residual stresses, due to turning operations, which can dangerously affect the fatigue performance of the component. In this paper an analytical approach is presented to reconstruct the residual stress field from a limited incomplete set of measurements. Airy stress function is used as the primary unknown to directly solve the equilibrium equations and satisfying the boundary conditions. In this new method there exists the flexibility to impose the physical conditions that govern the behavior of residual stress to achieve a meaningful complete stress field. The analysis is also coupled to a least squares approximation and a regularization method to provide stability of the inverse problem. The power of this new method is then demonstrated by analyzing some experimental measurements and achieving a good agreement between the model prediction and the results obtained from residual stress measurement.

Augmented Reality Interaction System in 3D Environment

It is important to give input information without other device in AR system. One solution is using hand for augmented reality application. Many researchers have proposed different solutions for hand interface in augmented reality. Analyze Histogram and connecting factor is can be example for that. Various Direction searching is one of robust way to recognition hand but it takes too much calculating time. And background should be distinguished with skin color. This paper proposes a hand tracking method to control the 3D object in augmented reality using depth device and skin color. Also in this work discussed relationship between several markers, which is based on relationship between camera and marker. One marker used for displaying virtual object and three markers for detecting hand gesture and manipulating the virtual object.

Ripper and Sugar Effects on Hydroxymethylfurfural Formation in Gingerbread Biscuits

Hydroxymethylfurfural (HMF) is formed by thermally treating products rich in carbohydrates. HMF and other furan derivatives are toxic. The aim of the research was to establish the content of HMF in gingerbread biscuits with honey and sugar syrup additives by using three leavening agents— ammonium carbonate (NH4HCO3 and (NH4)2CO3), baking powder, and baking soda (NaHCO3). The content of HMF is significantly affected by the leavening agent used. The content of HMF with honey where ammonium carbonate was used as additive range from 5.7 to 27.3mg 100g-1, but when sugar syrup is used the content varies from 2.3 to 7.4mg 100g-1. When baking powder and baking soda are used as leavening agents, the content of HMF exceeds 4mg 100g-1 in the event honey had been added and the baking time had been longer (10 minutes at 180°C or 9 minutes at 200°C).

Influence of Ambiguity Cluster on Quality Improvement in Image Compression

Image coding based on clustering provides immediate access to targeted features of interest in a high quality decoded image. This approach is useful for intelligent devices, as well as for multimedia content-based description standards. The result of image clustering cannot be precise in some positions especially on pixels with edge information which produce ambiguity among the clusters. Even with a good enhancement operator based on PDE, the quality of the decoded image will highly depend on the clustering process. In this paper, we introduce an ambiguity cluster in image coding to represent pixels with vagueness properties. The presence of such cluster allows preserving some details inherent to edges as well for uncertain pixels. It will also be very useful during the decoding phase in which an anisotropic diffusion operator, such as Perona-Malik, enhances the quality of the restored image. This work also offers a comparative study to demonstrate the effectiveness of a fuzzy clustering technique in detecting the ambiguity cluster without losing lot of the essential image information. Several experiments have been carried out to demonstrate the usefulness of ambiguity concept in image compression. The coding results and the performance of the proposed algorithms are discussed in terms of the peak signal-tonoise ratio and the quantity of ambiguous pixels.

Concrete Mix Design Using Neural Network

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Using Hybrid System of Ground Heat Exchanger and Evaporative Cooler in Arid Weather Condition

In this paper, the feasibility study of using a hybrid system of ground heat exchangers (GHE) and direct evaporative cooling system in arid weather condition has been performed. The model is applied for Yazd and Kerman, two cities with arid weather condition in Iran. The system composed of three sections: Ground- Coupled-Circuit (GCC), Direct Evaporative Cooler (DEC) and Cooling Coil Unite (CCU). The GCC provides the necessary precooling for DEC. The GCC includes four vertical GHE which are designed in series configuration. Simulation results show that hybridization of GCC and DEC could provide comfort condition whereas DEC alone did not. Based on the results the cooling effectiveness of a hybrid system is more than unity. Thus, this novel hybrid system could decrease the air temperature below the ambient wet-bulb temperature. This environmentally clean and energy efficient system can be considered as an alternative to the mechanical vapor compression systems.

Natural Ventilation as a Design Strategy for Energy Saving

Ventilation is a fundamental requirement for occupant health and indoor air quality in buildings. Natural ventilation can be used as a design strategy in free-running buildings to: • Renew indoor air with fresh outside air and lower room temperatures at times when the outdoor air is cooler. • Promote air flow to cool down the building structure (structural cooling). • Promote occupant physiological cooling processes (comfort cooling). This paper focuses on ways in which ventilation can provide the mechanism for heat dissipation and cooling of the building structure..It also discusses use of ventilation as a means of increasing air movement to improve comfort when indoor air temperatures are too high. The main influencing factors and design considerations and quantitative guidelines to help meet the design objectives are also discussed.

Modeling Erosion Control in Oil Production Wells

The sand production problem has led researchers into making various attempts to understand the phenomenon. The generally accepted concept is that the occurrence of sanding is due to the in-situ stress conditions and the induced changes in stress that results in the failure of the reservoir sandstone during hydrocarbon production from wellbores. By using a hypothetical cased (perforated) well, an approach to the problem is presented here by using Finite Element numerical modelling techniques. In addition to the examination of the erosion problem, the influence of certain key parameters is studied in order to ascertain their effect on the failure and subsequent erosion process. The major variables investigated include: drawdown, perforation depth, and the erosion criterion. Also included is the determination of the optimal mud pressure for given operational and reservoir conditions. The improved understanding between parameters enables the choice of optimal values to minimize sanding during oil production.

Scale Time Offset Robust Modulation (STORM) in a Code Division Multiaccess Environment

Scale Time Offset Robust Modulation (STORM) [1]– [3] is a high bandwidth waveform design that adds time-scale to embedded reference modulations using only time-delay [4]. In an environment where each user has a specific delay and scale, identification of the user with the highest signal power and that user-s phase is facilitated by the STORM processor. Both of these parameters are required in an efficient multiuser detection algorithm. In this paper, the STORM modulation approach is evaluated with a direct sequence spread quadrature phase shift keying (DS-QPSK) system. A misconception of the STORM time scale modulation is that a fine temporal resolution is required at the receiver. STORM will be applied to a QPSK code division multiaccess (CDMA) system by modifying the spreading codes. Specifically, the in-phase code will use a typical spreading code, and the quadrature code will use a time-delayed and time-scaled version of the in-phase code. Subsequently, the same temporal resolution in the receiver is required before and after the application of STORM. In this paper, the bit error performance of STORM in a synchronous CDMA system is evaluated and compared to theory, and the bit error performance of STORM incorporated in a single user WCDMA downlink is presented to demonstrate the applicability of STORM in a modern communication system.

Efficient and Effective Gabor Feature Representation for Face Detection

We here propose improved version of elastic graph matching (EGM) as a face detector, called the multi-scale EGM (MS-EGM). In this improvement, Gabor wavelet-based pyramid reduces computational complexity for the feature representation often used in the conventional EGM, but preserving a critical amount of information about an image. The MS-EGM gives us higher detection performance than Viola-Jones object detection algorithm of the AdaBoost Haar-like feature cascade. We also show rapid detection speeds of the MS-EGM, comparable to the Viola-Jones method. We find fruitful benefits in the MS-EGM, in terms of topological feature representation for a face.

Sulphur-Mediated Precipitation of Pt/Fe/Co/CrIons in Liquid-Liquid and Gas-Liquid Chloride Systems

The proof of concept experiments were conducted to determine the feasibility of using small amounts of Dissolved Sulphur (DS) from the gaseous phase to precipitate platinum ions in chloride media. Two sets of precipitation experiments were performed in which the source of sulphur atoms was either a thiosulphate solution (Na2S2O3) or a sulphur dioxide gas (SO2). In liquid-liquid (L-L) system, complete precipitation of Pt was achieved at small dosages of Na2S2O3 (0.01 – 1.0 M) in a time interval of 3-5 minutes. On the basis of this result, gas absorption tests were carried out mainly to achieve sulphur solubility equivalent to 0.018 M. The idea that huge amounts of precious metals could be recovered selectively from their dilute solutions by utilizing the waste SO2 streams at low pressure seemed attractive from the economic and environmental point of views. Therefore, mass transfer characteristics of SO2 gas associated with reactive absorption across the gas-liquid (G-L) interface were evaluated under different conditions of pressure (0.5 – 2 bar), solution temperature ranges from 20 – 50 oC and acid strength (1 – 4 M, HCl). This paper concludes with information about selective precipitation of Pt in the presence of cations (Fe2+, Co2+, and Cr3+) in a CSTR and recommendation to scale up laboratory data to industrial pilot scale operations.

Optimization of Lakes Aeration Process

The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approach

Chelate Enhanced Modified Fenton Treatment for Polycyclic Aromatic Hydrocarbons Contaminated Soils

This work focuses on the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil via Fenton treatment coupled with novel chelating agent (CA). The feasibility of chelated modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soils was investigated in laboratory scale batch experiments at natural pH. The effects of adding inorganic and organic CA are discussed. Experiments using different iron catalyst to CA ratios were conducted, resulting in hydrogen peroxide: soil: iron: CA weight ratios that varied from 0.049: 1: 0.072: 0.008 to 0.049: 1: 0.072: 0.067. The results revealed that (1) inorganic CA could provide much higher PAH removal efficiency and (2) most of the proposed CAs were more efficient than commonly utilised CAs even at mild ratio. This work highlights the potential of novel chelating agents in maintaining a suitable environment throughout the Fenton treatment, particularly in soils with high buffer capacity.