Ideological Tendencies of the Teachers about the Causes of Vandalism in Schools and Solution Proposals

Aggression is a behavior that cannot be approved by the society. Vandalism which is aggression towards objects is an action that tends to damage public or personal property. The behaviors that are described as vandalism can often be observed in the schools as well. According to Zwier and Vaughan (1) previous research about the reasons of and precautionary measures for vandalism in schools can be grouped in three tendency categories: conservative, liberal and radical. In this context, the main aim of this study is to discover which ideological tendency of the reasons of school vandalism is adopted by the teachers and what are their physical, environmental, school system and societal solutions for vandalism. A total of 200 teachers participated in this study, and the mean age was 34.20 years (SD = 6.54). The sample was made up of 109 females and 91 males. For the analysis of the data, SPSS 15.00, frequency, percentage, and t-test were used. The research showed that the teachers have tendencies in the order of conservative, liberal and radical for the reasons of vandalism. The research also showed that the teachers do not have any tendency for eliminating vandalism physically and general solutions on the level of society; on the other hand they mostly adopt a conservative tendency in terms of precautions against vandalism in the school system. Second most, they adopt the liberal tendency in terms of precautions against vandalism in the school system. . It is observed that the findings of this study are comparable to the existing literature on the subject. Future studies should be conducted with multiple variants and bigger sampling.

Design of Tracking Controllers for Medical Equipment Holders Using AHRS and MEMS Sensors

There are various kinds of medical equipment which requires relatively accurate positional adjustments for successful treatment. However, patients tend to move without notice during a certain span of operations. Therefore, it is common practice that accompanying operators adjust the focus of the equipment. In this paper, tracking controllers for medical equipment are suggested to replace the operators. The tracking controllers use AHRS sensor information to recognize the movements of patients. Sensor fusion is applied to reducing the error magnitudes through linear Kalman filters. The image processing of optical markers is included to adjust the accumulation errors of gyroscope sensor data especially for yaw angles. The tracking controller reduces the positional errors between the current focus of a device and the target position on the body of a patient. Since the sensing frequencies of AHRS sensors are very high compared to the physical movements, the control performance is satisfactory. The typical applications are, for example, ESWT or rTMS, which have the error ranges of a few centimeters.

Relevance Feedback within CBIR Systems

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Tractive Performance Prediction for Intelligent Air-Cushion Track Vehicle: Fuzzy Logic Approach

Fuzzy logic approach is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Sinkage measuring sensor, magnetic switch, pressure sensor, micro controller, control valves and battery are incorporated with the Fuzzy logic system (FLS) to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.

Milling Chatter Prevention by Adaptive Spindle Speed Tuning

This paper presents how the real-time chatter prevention can be realized by feedback of acoustic cutting signal, and the efficacy of the proposed adaptive spindle speed tuning algorithm is verified by intensive experimental simulations. A pair of microphones, perpendicular to each other, is used to acquire the acoustic cutting signal resulting from milling chatter. A real-time feedback control loop is constructed for spindle speed compensation so that the milling process can be ensured to be within the stability zone of stability lobe diagram. Acoustic Chatter Signal Index (ACSI) and Spindle Speed Compensation Strategy (SSCS) are proposed to quantify the acoustic signal and actively tune the spindle speed respectively. By converting the acoustic feedback signal into ACSI, an appropriate Spindle Speed Compensation Rate (SSCR) can be determined by SSCS based on real-time chatter level or ACSI. Accordingly, the compensation command, referred to as Added-On Voltage (AOV), is applied to increase/decrease the spindle motor speed. By inspection on the precision and quality of the workpiece surface after milling, the efficacy of the real-time chatter prevention strategy via acoustic signal feedback is further assured.

Estimating the Runoff Using the Simple Tank Model and Comparing it with the SCS-CN Model - A Case Study of the Dez River Basin

Run-offs are considered as important hydrological factors in feasibility studies of river engineering and irrigation-related projects under arid and semi-arid condition. Flood control is one of the crucial factor, the management of which while mitigates its destructive consequences, abstracts considerable volume of renewable water resources. The methodology applied here was based on Mizumura, which applied a mathematical model for simple tank to simulate the rainfall-run-off process in a particular water basin using the data from the observational hydrograph. The model was applied in the Dez River water basin adjacent to Greater Dezful region, Iran in order to simulate and estimate the floods. Results indicated that the calculated hydrographs using the simple tank method, SCS-CN model and the observation hydrographs had a close proximity. It was also found that on average the flood time and discharge peaks in the simple tank were closer to the observational data than the CN method. On the other hand, the calculated flood volume in the CN model was significantly closer to the observational data than the simple tank model.

Zno Nanocomposites: Control of Enviromental Effects for Preservation of old Manuscripts

We investigate the ZnO role in the inherent protection of old manuscripts to protect them against environmental damaging effect of ultraviolet radiation, pollutant gasses, mold and bacteria. In this study a cellulosic nanocomposite of ZnO were used as protective coating on the surface of paper fibers. This layered nanocomposite can act as a consolidate materials too. Furthermore, to determine how well paper works screen objects from the damaging effects, two accelerated aging mechanisms due to light and heat are discussed. Results show good stability of papers with nanocomposite coating. Also, a good light stability was shown in the colored paper that treated with this nanocomposite. Furthermore, to demonstrate the degree of antifungal and antibacterial properties of coated papers, papers was treated with four common molds and bacteria and the good preventive effects of coated paper against molds and bacteria are described.

Performance Evaluation of Bluetooth Links in the Presence of Specific Types of Interference

In the last couple of years Bluetooth has gained a large share in the market of home and personal appliances. It is now a well established technology a short range supplement to the wireless world of 802.11. The two main trends of research that have sprung from these developments are directed towards the coexistence and performance issues of Bluetooth and 802.11 as well as the co-existence in the very short range of multiple Bluetooth devices. Our work aims at thoroughly investigating different aspects of co-channel interference and effects of transmission power, distance and 802.11 interference on Bluetooth connections.

Development of State Model Theory for External Exclusive NOR Type LFSR Structures

Using state space technique and GF(2) theory, a simulation model for external exclusive NOR type LFSR structures is developed. Through this tool a systematic procedure is devised for computing pseudo-random binary sequences from such structures.

Cultural Anxiety and Its Impact on Students- Life: A Case Study of International Students in Wuhan University

This article illustrates that how non similar culture become a cause of constant anxiety among international students in China. For that, a survey was carried out among international students of Wuhan University, China. The association among non similar culture, non familiarity of Chinese culture, self finance students and food problem is looked at through a regression line, and in the light of empirical results, a model is anticipated which elucidates these results. Some suggestions were directed at the end which will help to mitigate the anxiety among prospective students in Chinese universities.

Determination of Sequential Best Replies in N-player Games by Genetic Algorithms

An iterative algorithm is proposed and tested in Cournot Game models, which is based on the convergence of sequential best responses and the utilization of a genetic algorithm for determining each player-s best response to a given strategy profile of its opponents. An extra outer loop is used, to address the problem of finite accuracy, which is inherent in genetic algorithms, since the set of feasible values in such an algorithm is finite. The algorithm is tested in five Cournot models, three of which have convergent best replies sequence, one with divergent sequential best replies and one with “local NE traps"[14], where classical local search algorithms fail to identify the Nash Equilibrium. After a series of simulations, we conclude that the algorithm proposed converges to the Nash Equilibrium, with any level of accuracy needed, in all but the case where the sequential best replies process diverges.

Determinants of Aggression among Young Adolescents

Aggression is a multi- factorial concept and multilevel in nature. The Young Adolescent is being influenced by family, school and community. This paper is aimed to determine the following: aggression level among young adolescents, difference of level of aggression on school and year levels and to determine the correlates of aggression. There were 142 high school students from two different national highs schools (Region 3 and National Capital Region).Convenience sampling was use in this study. The following measures were used namely: Aggression Scale, Parental Support Fighting Scale, Positive Behavior Scale and Exposure to Violence and Trauma questionnaire. There was no significant difference in aggression level among different year level and schools. The findings of the study suggested that high level of community violence and having low parental support for non-aggressive behavior contribute to the prediction of aggression.

An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks

The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.

Financial Analysis Analogies for Software Risk

A dynamic software risk assessment model is presented. Analogies between dynamic financial analysis and software risk assessment models are established and based on these analogies it suggested that dynamic risk model for software projects is the way to move forward for the risk assessment of software project. It is shown how software risk assessment change during different phases of a software project and hence requires a dynamic risk assessment model to capture these variations. Further evolution of dynamic financial analysis models is discussed and mapped to the evolution of software risk assessment models.

Biological Soil Conservation Planning by Spatial Multi-Criteria Evaluation Techniques (Case Study: Bonkuh Watershed in Iran)

This paper discusses site selection process for biological soil conservation planning. It was supported by a valuefocused approach and spatial multi-criteria evaluation techniques. A first set of spatial criteria was used to design a number of potential sites. Next, a new set of spatial and non-spatial criteria was employed, including the natural factors and the financial costs, together with the degree of suitability for the Bonkuh watershed to biological soil conservation planning and to recommend the most acceptable program. The whole process was facilitated by a new software tool that supports spatial multiple criteria evaluation, or SMCE in GIS software (ILWIS). The application of this tool, combined with a continual feedback by the public attentions, has provided an effective methodology to solve complex decisional problem in biological soil conservation planning.

Central Pattern Generator Incorporating the Actuator Dynamics for a Hexapod Robot

We proposed the use of a Toda-Rayleigh ring as a central pattern generator (CPG) for controlling hexapodal robots. We show that the ring composed of six Toda-Rayleigh units coupled to the limb actuators reproduces the most common hexapodal gaits. We provide an electrical circuit implementation of the CPG and test our theoretical results obtaining fixed gaits. Then we propose a method of incorporation of the actuator (motor) dynamics in the CPG. With this approach we close the loop CPG – environment – CPG, thus obtaining a decentralized model for the leg control that does not require higher level intervention to the CPG during locomotion in a nonhomogeneous environments. The gaits generated by the novel CPG are not fixed, but adapt to the current robot bahvior.

Influence of Artificial Roughness on Heat Transfer in the Rotating Flow

The results of an experimental study of the process of convective and boiling heat transfer in the vessel with stirrer for smooth and rough ring-shaped pipes are presented. It is established that creation of two-dimensional artificial roughness on the heated surface causes the essential (~100%) intensification of convective heat transfer. In case of boiling the influence of roughness appears on the initial stage of boiling and in case of fully developed nucleate boiling there was no intensification of heat transfer. The similitude equation for calculating convective heat transfer coefficient, which generalizes well experimental data both for the smooth and the rough surfaces is proposed.

A Study on Integrated Performance of Tap-Changing Transformer and SVC in Association with Power System Voltage Stability

Electricity market activities and a growing demand for electricity have led to heavily stressed power systems. This requires operation of the networks closer to their stability limits. Power system operation is affected by stability related problems, leading to unpredictable system behavior. Voltage stability refers to the ability of a power system to sustain appropriate voltage levels through large and small disturbances. Steady-state voltage stability is concerned with limits on the existence of steady-state operating points for the network. FACTS devices can be utilized to increase the transmission capacity, the stability margin and dynamic behavior or serve to ensure improved power quality. Their main capabilities are reactive power compensation, voltage control and power flow control. Among the FACTS controllers, Static Var Compensator (SVC) provides fast acting dynamic reactive compensation for voltage support during contingency events. In this paper, voltage stability assessment with appropriate representations of tap-changer transformers and SVC is investigated. Integrating both of these devices is the main topic of this paper. Effect of the presence of tap-changing transformers on static VAR compensator controller parameters and ratings necessary to stabilize load voltages at certain values are highlighted. The interrelation between transformer off nominal tap ratios and the SVC controller gains and droop slopes and the SVC rating are found. P-V curves are constructed to calculate loadability margins.

Comparative Analysis of Transient-Fault Tolerant Schemes for Network on Chips

Network on a chip (NoC) has been proposed as a viable solution to counter the inefficiency of buses in the current VLSI on-chip interconnects. However, as the silicon chip accommodates more transistors, the probability of transient faults is increasing, making fault tolerance a key concern in scaling chips. In packet based communication on a chip, transient failures can corrupt the data packet and hence, undermine the accuracy of data communication. In this paper, we present a comparative analysis of transient fault tolerant techniques including end-to-end, node-by-node, and stochastic communication based on flooding principle.

Deep Web Content Mining

The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.