Crystalline Graphene Nanoribbons with Atomically Smooth Edges via a Novel Physico- Chemical Route

A novel physico-chemical route to produce few layer graphene nanoribbons with atomically smooth edges is reported, via acid treatment (H2SO4:HNO3) followed by characteristic thermal shock processes involving extremely cold substances. Samples were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. This method demonstrates the importance of having the nanotubes open ended for an efficient uniform unzipping along the nanotube axis. The average dimensions of these nanoribbons are approximately ca. 210 nm wide and consist of few layers, as observed by transmission electron microscopy. The produced nanoribbons exhibit different chiralities, as observed by high resolution transmission electron microscopy. This method is able to provide graphene nanoribbons with atomically smooth edges which could be used in various applications including sensors, gas adsorption materials, composite fillers, among others.

Synthesis of Silk Fibroin Fiber for Indoor air Particulate Removal

The main objective of this research is to synthesize silk fibroin fiber for indoor air particulate removal. Silk cocoons were de-gummed using 0.5 wt % Na2CO3 alkaline solutions at 90 Ó╣ìC for 60 mins, washed with distilled water, and dried at 80 Ó╣ìC for 3 hrs in a vacuum oven. Two sets of experiment were conducted to investigate the impacts of initial particulate matter (PM) concentration and that of air flow rate on the removal efficiency. Rice bran collected from a local rice mill in Ubonratchathani province was used as indoor air contaminant in this work. The morphology and physical properties of silk fibroin (SF) fiber were measured. The SEM revealed the deposition of PM on the used fiber. The PM removal efficiencies of 72.29 ± 3.03 % and 39.33 ± 1.99 % were obtained of PM10 and PM2.5, respectively, when using the initial PM concentration at 0.040 mg/m3 and 0.020 mg/m3 of PM10 and PM2.5, respectively, with the air flow rate of 5 L/min.

Design of AC Electronics Load Surge Protection

This study examines the design and construction of AC Electronics load surge protection in order to carry electric surge load arisen from faults in low voltage electricity system (single phase/220V) by using the principle of electronics load clamping voltage during induction period so that electric voltage could go through to safe load and continue to work. The qualification of the designed device could prevent both transient over voltage and voltage swell. Both will work in cooperation, resulting in the ability to improve and modify the quality of electrical power in Thailand electricity distribution system more effective than the past and help increase the lifetime of electric appliances, electric devices, and electricity protection equipments.

Global and Local Structure of Supported Pd Catalysts

The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.

The Development of Taiwanese Electronic Medical Record Systems Evaluation Instrument

This study used Item Analysis, Exploratory Factor Analysis (EFA) and Reliability Analysis (Cronbach-s α value) to exam the Questions which selected by the Delphi method based on the issue of “Socio-technical system (STS)" and user-centered perspective. A structure questionnaire with seventy-four questions which could be categorized into nine dimensions (healthcare environment, organization behaviour, system quality, medical data quality, service quality, safety quality, user usage, user satisfaction, and organization net benefits) was provided to evaluate EMR of the Taiwanese healthcare environment.

Vector Control of Multimotor Drive

Three-phase induction machines are today a standard for industrial electrical drives. Cost, reliability, robustness and maintenance free operation are among the reasons these machines are replacing dc drive systems. The development of power electronics and signal processing systems has eliminated one of the greatest disadvantages of such ac systems, which is the issue of control. With modern techniques of field oriented vector control, the task of variable speed control of induction machines is no longer a disadvantage. The need to increase system performance, particularly when facing limits on the power ratings of power supplies and semiconductors, motivates the use of phase number other than three, In this paper a novel scheme of connecting two, three phase induction motors in parallel fed by two inverters; viz. VSI and CSI and their vector control is presented.

Modulational Instability of Electron Plasma Waves in Finite Temperature Quantum Plasma

Using the quantum hydrodynamic (QHD) model for quantum plasma at finite temperature the modulational instability of electron plasma waves is investigated by deriving a nonlinear Schrodinger equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of electron plasma waves in quantum plasma.

Agent-Based Offline Electronic Voting

Many electronic voting systems, classified mainly as homomorphic cryptography based, mix-net based and blind signature based, appear after the eighties when zero knowledge proofs were introduced. The common ground for all these three systems is that none of them works without real time cryptologic calculations that should be held on a server. As far as known, the agent-based approach has not been used in a secure electronic voting system. In this study, an agent-based electronic voting schema, which does not contain real time calculations on the server side, is proposed. Conventional cryptologic methods are used in the proposed schema and some of the requirements of an electronic voting system are constructed within the schema. The schema seems quite secure if the used cryptologic methods and agents are secure. In this paper, proposed schema will be explained and compared with already known electronic voting systems.

Information Sharing to Transformation: Antecedents of Collaborative Networked Learning in Manufacturing

Collaborative networked learning (hereafter CNL) was first proposed by Charles Findley in his work “Collaborative networked learning: online facilitation and software support" as part of instructional learning for the future of the knowledge worker. His premise was that through electronic dialogue learners and experts could interactively communicate within a contextual framework to resolve problems, and/or to improve product or process knowledge. Collaborative learning has always been the forefront of educational technology and pedagogical research, but not in the mainstream of operations management. As a result, there is a large disparity in the study of CNL, and little is known about the antecedents of network collaboration and sharing of information among diverse employees in the manufacturing environment. This paper presents a model to bridge the gap between theory and practice. The objective is that manufacturing organizations will be able to accelerate organizational learning and sharing of information through various collaborative

Heating of High-Density Hydrogen by High- Current Arc Radiation

The investigation results of high-density hydrogen heating by high-current electric arc are presented at initial pressure from 5 MPa to 160 MPa with current amplitude up to 1.6 MA and current rate of rise 109-1011 A/s. When changing the initial pressure and current rate of rise, channel temperature varies from several electronvolts to hundreds electronvolts. Arc channel radius is several millimeters. But the radius of the discharge chamber greater than the radius of the arc channel on approximately order of magnitude. High efficiency of gas heating is caused by radiation absorption of hydrogen surrounding the arc. Current channel consist from vapor of the initiating wire. At current rate of rise of 109 A/s and relatively small current amplitude gas heating occurs due to radiation absorption in the band transparency of hydrogen by the wire vapours with photon energies less than 13.6 eV. At current rate of rise of 1011 A/s gas heating is due to hydrogen absorption of soft X-rays from discharge channel.

Investigation of Thin Film Cathode Prepared by Synthesized Nano Pyrite

Pyrite (FeS2) is a promising candidate for cathode materials in batteries because of it`s high theoretical capacity, low cost and non-toxicity. In this study, nano size iron disulfide thin film was prepared on graphite substrate through a new method as battery cathode. In this way, acetylene black and poly vinylidene fluoride were used as electron conductor and binder, respectively. Fabricated thin films were analyzed by XRD and SEM. These results and electrochemical data confirm improvement of battery discharge capacity in comparison with commercial type of pyrite.

Gas Detection via Machine Learning

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Universal Qibla and Prayer Time Finder

People nowadays love to travel around the world. Regardless of their location and time, they especially Muslims still need to perform their five times prayer. Normally for travelers, they need to bring maps, compass and for Muslim, they even have to bring Qibla pointer when they travel. It is slightly difficult to determine the Qibla direction and to know the time for each prayer. In this paper we present a new electronic device called Universal Qibla and Prayer Time Finder to locate the Qibla direction and to determine each prayer time based on the current user-s location. This device use PIC microcontroller equipped with digital compass and Global Positioning System (GPS) where it will display the exact Qibla direction and prayer time automatically at any place in the world. This device is reliable, user friendly and accurate in determining the Qibla direction and prayer time.

Solving Differential's Equation of Carrier Load on Semiconductor

The most suitable Semiconductor detector, Cadmium Zinc Teloraid , has unique properties because of high Atomic number and wide Brand Gap . It has been tried in this project with different processes such as Lead , Diffusion , Produce and Recombination , effect of Trapping and injection carrier of CdZnTe , to get hole and then present a complete answer of it . Then we should investigate the movement of carrier ( Electron – Hole ) by using above answer.

Sensing Characteristics to Acid Vapors of a TPPS Coated Fiber Optic: A Preliminary Analysis

In this work we report on preliminary analysis of a novel optoelectronic gas sensor based on an optical fiber integrated with a tetrakis(4-sulfonatophenyl)porphyrin (TPPS) thin film. The sensitive materials are selectively deposited on the core region of a fiber tip by UV light induced deposition technique. A simple and cheap process which can be easily extended to different porphyrin derivatives. When the TPPS film on the fiber tip is exposed to acid and/or base vapors, dramatic changes occur in the aggregation structure of the dye molecules in the film, from J- to H-type, resulting in a profound modification of their corresponding reflectance spectra. From the achieved experimental results it is evident that the presence of intense and narrow band peaks in the reflected spectra could be monitored to detect hazardous vapors.

Analysis of Polymer Surface Modifications due to Discharges Initiated by Water Droplets under High Electric Fields

This paper investigates the influence of various parameters on the behaviour of water droplets on polymeric surfaces under high electric fields. An inclined plane test was carried out to understand the droplet behaviour in strong electric field. Parameters such as water droplet conductivity, droplet volume, polymeric surface roughness and droplet positioning with respect to the electrodes were studied. The flashover voltage is affected by all aforementioned parameters. The droplet positioning is in some cases more vital than the droplet volume. Surface damages were analysed using Scanning Electron Microscopy (SEM) studies and by Energy dispersive X-ray Analysis (EDAX). It is observes that magnitude of discharge have direct influence on amount of surface da

ISCS (Information Security Check Service) for the Safety and Reliability of Communications

Recent widespread use of information and communication technology has greatly changed information security risks that businesses and institutions encounter. Along with this situation, in order to ensure security and have confidence in electronic trading, it has become important for organizations to take competent information security measures to provide international confidence that sensitive information is secure. Against this backdrop, the approach to information security checking has come to an important issue, which is believed to be common to all countries. The purpose of this paper is to introduce the new system of information security checking program in Korea and to propose synthetic information security countermeasures under domestic circumstances in order to protect physical equipment, security management and technology, and the operation of security check for securing services on ISP(Internet Service Provider), IDC(Internet Data Center), and e-commerce(shopping malls, etc.)

Development of a Microsensor to Minimize Post Cataract Surgery Complications

This paper presents design and characterization of a microaccelerometer designated for integration into cataract surgical probe to detect hardness of different eye tissues during cataract surgery. Soft posterior lens capsule of eye can be easily damaged in comparison with hard opaque lens since the surgeon can not see directly behind cutting needle during the surgery. Presence of microsensor helps the surgeon to avoid rupturing posterior lens capsule which if occurs leads to severe complications such as glaucoma, infection, or even blindness. The microsensor having overall dimensions of 480 μm x 395 μm is able to deliver significant capacitance variations during encountered vibration situations which makes it capable to distinguish between different types of tissue. Integration of electronic components on chip ensures high level of reliability and noise immunity while minimizes space and power requirements. Physical characteristics and results on performance testing, proves integration of microsensor as an effective tool to aid the surgeon during this procedure.

Reutilization of Organic and Peat Soils by Deep Cement Mixing

Limited infrastructure development on peats and organic soils is a serious geotechnical issues common to many countries of the world especially Malaysia which distributed 1.5 mill ha of those problematic soil. These soils have high water content and organic content which exhibit different mechanical properties and may also change chemically and biologically with time. Constructing structures on peaty ground involves the risk of ground failure and extreme settlement. Nowdays, much efforts need to be done in making peatlands usable for construction due to increased landuse. Deep mixing method employing cement as binders, is generally used as measure again peaty/ organic ground failure problem. Where the technique is widely adopted because it can improved ground considerably in a short period of time. An understanding of geotechnical properties as shear strength, stiffness and compressibility behavior of these soils was requires before continues construction on it. Therefore, 1- 1.5 meter peat soil sample from states of Johor and an organic soil from Melaka, Malaysia were investigated. Cement were added to the soil in the pre-mixing stage with water cement ratio at range 3.5,7,14,140 for peats and 5,10,30 for organic soils, essentially to modify the original soil textures and properties. The mixtures which in slurry form will pour to polyvinyl chloride (pvc) tube and cured at room temperature 250C for 7,14 and 28 days. Laboratory experiments were conducted including unconfined compressive strength and bender element , to monitor the improved strength and stiffness of the 'stabilised mixed soils'. In between, scanning electron miscroscopic (SEM) were observations to investigate changes in microstructures of stabilised soils and to evaluated hardening effect of a peat and organic soils stabilised cement. This preliminary effort indicated that pre-mixing peat and organic soils contributes in gaining soil strength while help the engineers to establish a new method for those problematic ground improvement in further practical and long term applications.

Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits

The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.