Geophysical Investigation of Abnormal Seepages in Goronyo Dam Sokoto, North Western Nigeria Using Self-Potential Method

In this research, Self-Potential (SP) method was employed to locate anomalous electrical conductivity located in Goronyo area and also to determine the condition of the embankment of the dam. SP data were plotted against distance along with the profile and spacing of electrode using surfer software (version 12). High and low zones of SP values were identified along the right and left abutments of the dam reservoir. The regions with high SP values were described to be high tendency of fluid flow associate with wet sandy soil. These zones have the SP values ranging from 200 mV and above. High SP values were due to the high moisture content that may lead to the seepage of water leaking through this zone. The zones with high SP values occupied Profiles S1, S2, S3, S4 and S5 indicating the presence of potential seepage paths within the subsurface of the embankment. These regions of seepage were identified as weak zones and potential pathways through which water could be lost from the dam reservoir. The SP values for the regions range from 250 m to 400 m (S1), 306 m to 400 m (S2), 192 m to 400 m (S3), 48 m to 200 m (S4) and 7 m to 170 m (S5) with their corresponding maximum depths of 30 m, 28 m, 28 m, 30 m and 26 m respectively. However, zones of low SP values in the overburden were observed which shows the presence of intact regions, which may be due to the compactness and dryness around the dam. The weak zones were considered as geological features (such as fractures, joints, and faults) that have undermined the integrity of the dam structure, which has led to the abnormal seepage.

Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

The Strategic Engine Model: Redefined Strategy Structure, as per Market-and Resource-Based Theory Application, Tested in the Automotive Industry

The purpose of the paper is to redefine the levels of structure of corporate, business and functional strategies that were established over the past several decades, to a conceptual model, consisting of corporate, business and operations strategies, that are reinforced by functional strategies. We will propose a conceptual framework of different perspectives in the role of strategic operations as a separate strategic place and reposition the remaining functional strategies as supporting tools, existing at all three levels. The proposed model is called ‘the strategic engine’, since the mutual relationships of its ingredients are identical with main elements and working principle of the internal combustion engine. Based on theoretical essence, related to every strategic level, we will prove that the strategic engine model is useful for managers seeking to safeguard the competitive advantage of their companies. Each strategy level is researched through its basic elements. At the corporate level we examine the scope of firm’s product, the vertical and geographical coverage. At the business level, the point of interest is limited to the SWOT analysis’ basic elements. While at operations level, the key research issue relates to the scope of the following performance indicators: cost, quality, speed, flexibility and dependability. In this relationship, the paper provides a different view for the role of operations strategy within the overall strategy concept. We will prove that the theoretical essence of operations goes far beyond the scope of traditionally accepted business functions. Exploring the applications of Resource-based theory and Market-based theory within the strategic levels framework, we will prove that there is a logical consequence of the theoretical impact in corporate, business and operations strategy – at every strategic level, the validity of one theory is substituted to the level of the other. Practical application of the conceptual model is tested in automotive industry. Actually, the proposed theoretical concept is inspired by a leading global automotive group – Inchcape PLC, listed on the London Stock Exchange, and constituent of the FTSE 250 Index.

A Neuroscience-Based Learning Technique: Framework and Application to STEM

Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.

Simplified Stress Gradient Method for Stress-Intensity Factor Determination

Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.

Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR

Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 oC and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study.

The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber

In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.

Knowledge Management in Academic: A Perspective of Academic Research Contribution to Economic Development of a Nation

Information and Communication Technology (ICT) has made information access easier and affordable. Academic research has also benefited from this, with online journals and academic resource readily available by the click of a button. However, there are limited ways of assessing and controlling the quality of the academic research mostly in public institution. Nigeria is the most populous country in Africa with a significant number of universities and young population. The quality of knowledge created by academic researchers, however, needs to be evaluated due to the high number of predatory journals published by academia. The purpose of this qualitative study is to look at the knowledge creation, acquisition, and assimilation process by academic researchers in public universities in Nigeria. Qualitative research will be carried out using in-depth interviews and observations. Academic researchers will be interviewed and absorptive capacity theory will be used as the theoretical framework to guide the research. The findings from this study should help understand the impact of ICT on the knowledge creation process in academic research and to understand how ICT can affect the quality of knowledge produced by researchers. The findings from this study should help add value to the existing body of knowledge on the quality of academic research, especially in Africa where there is limited availability of quality academic research. As this study is limited to Nigerian universities, the outcome may not be generalized to other developing countries.

Leadership Styles in the Hotel Sector and Its Effect on Employees’ Creativity and Organizational Commitment

Leadership is crucial for hotel survival and success. It enables hotels to develop and compete effectively. This research intends to explore the implementation of six leadership styles by frontline hotel managers in four star hotels in Cairo and assess its impact on employees’ creativity and organizational commitment. The leadership patterns considered in this study includes: democratic, autocratic, laissez-faire, transformational, transactional, and ethical leaderships. Questionnaire was used as a research method to gather data. A structured survey was established and distributed on employees in Cairo’s four star hotels. A total of 284 questionnaire forms were returned and usable for statistical analysis. The results of this study identified that transactional and autocratic leadership were the prevalent styles used in four star hotels in Cairo. Two leadership styles proved to have significant high correlation and impact on employees’ creativity and organizational commitment including: transformational and democratic leadership. Besides, laissez-faire leadership was found had a smaller effect on employees’ creativity and ethical leadership had a lesser influence on employees’ commitment. The autocratic leadership had strong negative correlation and significant impact on both dependent variables. This research concludes that frontline hotel managers should adopt transformational and/or democratic leadership style in managing their subordinates.

Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt

One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.

Improving the Frequency Response of a Circular Dual-Mode Resonator with a Reconfigurable Bandwidth

In this paper, a method for reconfiguring bandwidth in a circular dual-mode resonator is presented. The method concerns the optimized geometry of a structure that may be used to host the tuning elements, which are typically RF (Radio Frequency) switches. The tuning elements themselves, and their performance during tuning, are not the focus of this paper. The designed resonator is able to reconfigure its fractional bandwidth by adjusting the inter-coupling level between the degenerate modes, while at the same time improving its response by adjusting the external-coupling level and keeping the center frequency fixed. The inter-coupling level has been adjusted by changing the dimensions of the perturbation element, while the external-coupling level has been adjusted by changing one of the feeder dimensions. The design was arrived at via optimization. Agreeing simulation and measurement results of the designed and implemented filters showed good improvements in return loss values and the stability of the center frequency.

Design of Stainless Steel Implant for Fractured Distal Femur

Perfect restoration of fractured distal femur has been a challenging task for the medical practitioners. In the present study, model of a fractured bone has been created using the scan data of the damaged bone. Thereafter, customized implant of Stainless Steel (SS-316L) for this fractured femur bone is modeled using the reverse engineering approach. Clinical set-up is prepared by assembling all the models together. Stress and deformation analysis of this clinical set-up has been performed in order to check the load bearing capacity and intactness of the joint. From this analysis, it has been inferred that the stresses and deformation developed due to the static load of the person is within the permissible limits.

Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube

Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.

Building a Transformative Continuing Professional Development Experience for Educators through a Principle-Based, Technological-Driven Knowledge Building Approach: A Case Study of a Professional Learning Team in Secondary Education

There has been a growing emphasis in elevating the teachers’ proficiency and competencies through continuing professional development (CPD) opportunities. In this era of a Volatile, Uncertain, Complex, Ambiguous (VUCA) world, teachers are expected to be collaborative designers, critical thinkers and creative builders. However, many of the CPD structures are still revolving in the model of transmission, which stands in contradiction to the cultivation of future-ready teachers for the innovative world of emerging technologies. This article puts forward the framing of CPD through a Principle-Based, Technological-Driven Knowledge Building Approach grounded in the essence of andragogy and progressive learning theories where growth is best exemplified through an authentic immersion in a social/community experience-based setting. Putting this Knowledge Building Professional Development Model (KBPDM) in operation via a Professional Learning Team (PLT) situated in a Secondary School in Singapore, research findings reveal that the intervention has led to a fundamental change in the learning paradigm of the teachers, henceforth equipping and empowering them successfully in their pedagogical design and practices for a 21st century classroom experience. This article concludes with the possibility in leveraging the Learning Analytics to deepen the CPD experiences for educators.

Species Profiling of White Grub Beetles and Evaluation of Pre and Post Sown Application of Insecticides against White Grub Infesting Soybean

White grub (Coleoptera: Scarabaeidae) is a major destructive pest in western Himalayan region of Uttarakhand. Beetles feed on apple, apricot, plum, walnut etc. during night while, second and third instar grubs feed on live roots of cultivated as well as non-cultivated crops. Collection and identification of scarab beetles through light trap was carried out at Crop Research Centre, Govind Ballab Pant University Pantnagar, Udham Singh Nagar (Uttarakhand) during 2018. Field trials were also conducted in 2018 to evaluate pre and post sown application of different insecticides against the white grub infesting soybean. The insecticides like Carbofuran 3 Granule (G) (750 g a.i./ha), Clothianidin 50 Water Dispersal Granule (WG) (120 g a.i./ha), Fipronil 0.3 G (50 g a.i./ha), Thiamethoxam 25 WG (80 g a.i./ha), Imidacloprid 70 WG (300 g a.i./ha), Chlorantraniliprole 0.4% G(100 g a.i./ha) and mixture of Fipronil 40% and Imidacloprid 40% WG (300 g a.i./ha) were applied at the time of sowing in pre sown experiment while same dosage of insecticides were applied in standing soybean crop during (first fortnight of July). Commutative plant mortality data were recorded after 20, 40, 60 days intervals and compared with untreated control. Total 23 species of white grub beetles recorded on the light trap and Holotrichia serrata Fabricious (Coleoptera: Melolonthinae) was found to be predominant species by recording 20.6% relative abundance out of the total light trap catch (i.e. 1316 beetles) followed by Phyllognathus sp. (14.6% relative abundance). H. rosettae and Heteronychus lioderus occupied third and fourth rank with 11.85% and 9.65% relative abundance, respectively. The emergence of beetles of predominant species started from 15th March, 2018. In April, average light trap catch was 382 white grub beetles, however, peak emergence of most of the white grub species was observed from June to July, 2018 i.e. 336 beetles in June followed by 303 beetles in the July. On the basis of the emergence pattern of white grub beetles, it may be concluded that the Peak Emergence Period (PEP) for the beetles of H. serrata was second fortnight of April for the total period of 15 days. In May, June and July relatively low population of H. serrata was observed. A decreasing trend in light trap catch was observed and went on till September during the study. No single beetle of H. serrata was observed on light trap from September onwards. The cumulative plant mortality data in both the experiments revealed that all the insecticidal treatments were significantly superior in protection-wise (6.49-16.82% cumulative plant mortality) over untreated control where highest plant mortality was 17.28 to 39.65% during study. The mixture of Fipronil 40% and Imidacloprid 40% WG applied at the rate of 300 g a.i. per ha proved to be most effective having lowest plant mortality i.e. 9.29 and 10.94% in pre and post sown crop, followed by Clothianidin 50 WG (120 g a.i. per ha) where the plant mortality was 10.57 and 11.93% in pre and post sown treatments, respectively. Both treatments were found significantly at par among each other. Production-wise, all the insecticidal treatments were found statistically superior (15.00-24.66 q per ha grain yields) over untreated control where the grain yield was 8.25 & 9.13 q per ha. Treatment Fipronil 40% + Imidacloprid 40% WG applied at the rate of 300 g a.i. per ha proved to be most effective and significantly superior over Imidacloprid 70WG applied at the rate of 300 g a.i. per ha.

Understanding How Money Laundering and Financing of Terrorism Are Conducted through the Real Estate Sector in the Middle East and North Africa Region

This research seeks to identify how money laundering activities are executed through the real estate sector. This article provides academics with literature on the topic and provides scholars, and practitioners with a better understanding of the risks and challenges involved. Data are gathered through survey in the Middle East and North Africa region and review of the available research. The results of the analysis will help identifying the factors attracting criminals to the real estate sector and develop an understanding of the methods used to launder illicit funds through this sector and the indicators of suspicion for reporting entities. Further analysis reveals the risks posed by money laundering and terrorist financing on the real estate sector and challenges facing states in this regard.

Experimental Investigation the Effectiveness of Using Heat Pipe on the Spacecraft Mockup Panel

The heat pipe is a thermal device which allows efficient transport of thermal energy. The experimental work of this research was split into two phases; phase 1 is the development of the facilities, material and test rig preparation. Phase 2 is the actual experiments and measurements of the thermal control mockup inside the modified vacuum chamber (MVC). Due to limited funds, the development on the thermal control subsystem was delayed and the experimental facilities such as suitable thermal vacuum chamber with space standard specifications were not available from the beginning of the research and had to be procured over a period of time. In all, these delays extended the project by one and a half year. Thermal control subsystem needs a special facility and equipment to be tested. The available vacuum chamber is not suitable for the thermal tests. Consequently, the modification of the chamber was a must. A vacuum chamber has been modified to be used as a Thermal Vaccum Chamber (TVC). A MVC is a vacuum chamber modified by using a stainless mirror box with perfect reflectability and the infrared lamp connected with the voltage regulator to vary the lamp intensity as it will be illustrated through the paper.

Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques

Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.

The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome

Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.

The Potential Involvement of Platelet Indices in Insulin Resistance in Morbid Obese Children

Association between insulin resistance (IR) and hematological parameters has long been a matter of interest. Within this context, body mass index (BMI), red blood cells, white blood cells and platelets were involved in this discussion. Parameters related to platelets associated with IR may be useful indicators for the identification of IR. Platelet indices such as mean platelet volume (MPV), platelet distribution width (PDW) and plateletcrit (PCT) are being questioned for their possible association with IR. The aim of this study was to investigate the association between platelet (PLT) count as well as PLT indices and the surrogate indices used to determine IR in morbid obese (MO) children. A total of 167 children participated in the study. Three groups were constituted. The number of cases was 34, 97 and 36 children in the normal BMI, MO and metabolic syndrome (MetS) groups, respectively. Sex- and age-dependent BMI-based percentile tables prepared by World Health Organization were used for the definition of morbid obesity. MetS criteria were determined. BMI values, homeostatic model assessment for IR (HOMA-IR), alanine transaminase-to-aspartate transaminase ratio (ALT/AST) and diagnostic obesity notation model assessment laboratory (DONMA-lab) index values were computed. PLT count and indices were analyzed using automated hematology analyzer. Data were collected for statistical analysis using SPSS for Windows. Arithmetic mean and standard deviation were calculated. Mean values of PLT-related parameters in both control and study groups were compared by one-way ANOVA followed by Tukey post hoc tests to determine whether a significant difference exists among the groups. The correlation analyses between PLT as well as IR indices were performed. Statistically significant difference was accepted as p-value < 0.05. Increased values were detected for PLT (p < 0.01) and PCT (p > 0.05) in MO group compared to those observed in children with N-BMI. Significant increases for PLT (p < 0.01) and PCT (p < 0.05) were observed in MetS group in comparison with the values obtained in children with N-BMI (p < 0.01). Significantly lower MPV and PDW values were obtained in MO group compared to the control group (p < 0.01). HOMA-IR (p < 0.05), DONMA-lab index (p < 0.001) and ALT/AST (p < 0.001) values in MO and MetS groups were significantly increased compared to the N-BMI group. On the other hand, DONMA-lab index values also differed between MO and MetS groups (p < 0.001). In the MO group, PLT was negatively correlated with MPV and PDW values. These correlations were not observed in the N-BMI group. None of the IR indices exhibited a correlation with PLT and PLT indices in the N-BMI group. HOMA-IR showed significant correlations both with PLT and PCT in the MO group. All of the three IR indices were well-correlated with each other in all groups. These findings point out the missing link between IR and PLT activation. In conclusion, PLT and PCT may be related to IR in addition to their identities as hemostasis markers during morbid obesity. Our findings have suggested that DONMA-lab index appears as the best surrogate marker for IR due to its discriminative feature between morbid obesity and MetS.