Improving the Frequency Response of a Circular Dual-Mode Resonator with a Reconfigurable Bandwidth

In this paper, a method for reconfiguring bandwidth in a circular dual-mode resonator is presented. The method concerns the optimized geometry of a structure that may be used to host the tuning elements, which are typically RF (Radio Frequency) switches. The tuning elements themselves, and their performance during tuning, are not the focus of this paper. The designed resonator is able to reconfigure its fractional bandwidth by adjusting the inter-coupling level between the degenerate modes, while at the same time improving its response by adjusting the external-coupling level and keeping the center frequency fixed. The inter-coupling level has been adjusted by changing the dimensions of the perturbation element, while the external-coupling level has been adjusted by changing one of the feeder dimensions. The design was arrived at via optimization. Agreeing simulation and measurement results of the designed and implemented filters showed good improvements in return loss values and the stability of the center frequency.

Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure

In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material.

Realization of Soliton Phase Characteristics in 10 Gbps, Single Channel, Uncompensated Telecommunication System

In this paper, the dependence of soliton pulses with respect to phase in a 10Gbps, single channel, dispersion uncompensated telecommunication system was studied. The characteristic feature of periodic soliton interaction was noted at the Interaction point (I=6202.5Km) in one collision length of L=12405.1 Km. The interaction point is located for 10Gbps system with an initial relative spacing (qo) of soliton as 5.28 using Perturbation theory. It is shown that, when two in-phase solitons are launched, they interact at the point I=6202.5 Km, but the interaction could be restricted with introduction of different phase initially. When the phase of the input solitons increases, the deviation of soliton pulses at the ‘I’ also increases. We have successfully demonstrated this effect in a telecommunication set-up in terms of Quality factor (Q), where the Q=0 for in-phase soliton. The Q was noted to be 125.9, 38.63, 47.53, 59.60, 161.37, and 78.04 for different phases such as 10o, 20o, 30o, 45o, 60o and 90o degrees respectively at Interaction point (I).

The Emission Spectra Due to Exciton-Exciton Collisions in GaAs/AlGaAs Quantum Well System

Optical emission based on excitonic scattering processes becomes important in dense exciton systems in which the average distance between excitons is of the order of a few Bohr radii but still below the exciton screening threshold. The phenomena due to interactions among excited states play significant role in the emission near band edge of the material. The theory of two-exciton collisions for GaAs/AlGaAs quantum well systems is a mild attempt to understand the physics associated with the optical spectra due to excitonic scattering processes in these novel systems. The four typical processes considered give different spectral shape, peak position and temperature dependence of the emission spectra. We have used the theory of scattering together with the second order perturbation theory to derive the radiative power spontaneously emitted at an energy ħω by these processes. The results arrived at are purely qualitative in nature. The intensity of emitted light in quantum well systems varies inversely to the square of temperature, whereas in case of bulk materials it simply decreases with the  temperature.

Analytical Solution for Compressible Gas Flow Inside a Two-Dimensional Poiseuille Flow in Microchannels with Constant Heat Flux Including the Creeping Effect

To achieve reliable solutions, today-s numerical and experimental activities need developing more accurate methods and utilizing expensive facilities, respectfully in microchannels. The analytical study can be considered as an alternative approach to alleviate the preceding difficulties. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. The perturbation theory has been used by many researchers to analyze microflows. In present work, a compressible microflow with constant heat flux boundary condition is analyzed. The flow is assumed to be fully developed and steady. The Mach and Reynolds numbers are also assumed to be very small. For this case, the creeping phenomenon may have some effect on the velocity profile. To achieve robustness solution it is assumed that the flow is quasi-isothermal. In this study, the creeping term which appears in the slip boundary condition is formulated by different mathematical formulas. The difference between this work and the previous ones is that the creeping term is taken into account and presented in non-dimensionalized form. The results obtained from perturbation theory are presented based on four non-dimensionalized parameters including the Reynolds, Mach, Prandtl and Brinkman numbers. The axial velocity, normal velocity and pressure profiles are obtained. Solutions for velocities and pressure for two cases with different Br numbers are compared with each other and the results show that the effect of creeping phenomenon on the velocity profile becomes more important when Br number is less than O(ε).