Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province

In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.

Israeli Households Caring for Children and Adults with Intellectual and Developmental Disabilities: An Explorative Study

Background: In recent years we are witnessing a welcome trend in which more children/persons with disabilities are living at home with their families and within their communities. This trend is related to various policy innovations as the UN Convention on the Rights of People with Disabilities that reflect a shift from the medical-institutional model to a human rights approach. We also witness the emergence of family centered approaches that perceive the family and not just the individual with the disability as a worthy target of policy planning, implementation and evaluation efforts. The current investigation aims to explore economic, psychological and social factors among households of families of children or adults with intellectual disabilities in Israel and to present policy recommendation. Methods: A national sample of 301 households was recruited through the education and employment settings of persons with intellectual disability. The main caregiver of the person with the disability (a parent) was interviewed. Measurements included the income and expense surveys; assets and debts questionnaire; the questionnaire on resources and stress; the social involvement questionnaire and Personal Wellbeing Index. Results: Findings indicate significant gaps in financial circumstances between households of families of children with intellectual disabilities and households of the general Israeli society. Households of families of children with intellectual disabilities report lower income and higher expenditures and loans than the general society. They experience difficulties in saving and coping with unexpected expenses. Caregivers (the parents) experience high stress, low social participation, low financial support from family, friend and non-governmental organizations and decreased well-being. They are highly dependent on social security allowances which constituted 40% of the household's income. Conclusions: Households' dependency on social security allowances may seem contradictory to the encouragement of persons with intellectual disabilities to favor independent living in light of the human rights approach to disability. New policy should aim at reducing caregivers' stress and enhance their social participation and support, with special emphasis on families of lower socio-economic status. Finally, there is a need to continue monitoring the economic and psycho-social needs of households of families of children with intellectual disabilities and other developmental disabilities.

Information Security Risk Management in IT-Based Process Virtualization: A Methodological Design Based on Action Research

Action research is a qualitative research methodology, which leads the researcher to delve into the problems of a community in order to understand its needs in depth and finally, to propose actions that lead to a change of social paradigm. Although this methodology had its beginnings in the human sciences, it has attracted increasing interest and acceptance in the field of information systems research since the 1990s. The countless possibilities offered nowadays by the use of Information Technologies (IT) in the development of different socio-economic activities have meant a change of social paradigm and the emergence of the so-called information and knowledge society. According to this, governments, large corporations, small entrepreneurs and in general, organizations of all kinds are using IT to virtualize their processes, taking them from the physical environment to the digital environment. However, there is a potential risk for organizations related with exposing valuable information without an appropriate framework for protecting it. This paper shows progress in the development of a methodological design to manage the information security risks associated with the IT-based processes virtualization, by applying the principles of the action research methodology and it is the result of a systematic review of the scientific literature. This design consists of seven fundamental stages. These are distributed in the three stages described in the action research methodology: 1) Observe, 2) Analyze and 3) Take actions. Finally, this paper aims to offer an alternative tool to traditional information security management methodologies with a view to being applied specifically in the planning stage of IT-based process virtualization in order to foresee risks and to establish security controls before formulating IT solutions in any type of organization.

The Effectiveness of Video Clips to Enhance Students’ Achievement and Motivation on History Learning and Facilitation

The purpose of this study is to determine the effectiveness of video clips to enhance students' achievement and motivation towards learning and facilitating of history. We use narrative literature studies to illustrate the current state of the two art and science in focused areas of inquiry. We used experimental method. The experimental method is a systematic scientific research method in which the researchers manipulate one or more variables to control and measure any changes in other variables. For this purpose, two experimental groups have been designed: one experimental and one groups consisting of 30 lower secondary students. The session is given to the first batch using a computer presentation program that uses video clips to be considered as experimental group, while the second group is assigned as the same class using traditional methods using dialogue and discussion techniques that are considered a control group. Both groups are subject to pre and post-trial in matters that are handled by the class. The findings show that the results of the pre-test analysis did not show statistically significant differences, which in turn proved the equality of the two groups. Meanwhile, post-test analysis results show that there was a statistically significant difference between the experimental group and the control group at an importance level of 0.05 for the benefit of the experimental group.

A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance

This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.

Consumer Perception of 3D Body Scanning While Online Shopping for Clothing

Technological development and the globalization in production and sales of clothing in the last decade have significantly influenced the changes in consumer relationship with the industrial-fashioned apparel and in the way of clothing purchasing. The Internet sale of clothing is in a constant and significant increase in the global market, but the possibilities offered by modern computing technologies in the customization segment are not yet fully involved, especially according to the individual customer requirements and body sizes. Considering the growing trend of online shopping, the main goal of this paper is to investigate the differences in customer perceptions towards online apparel shopping and particularly to discover the main differences in perceptions between customers regarding three different body sizes. In order to complete the research goal, the quantitative study on the sample of 85 Croatian consumers was conducted in 2017 in Zagreb, Croatia. Respondents were asked to indicate their level of agreement according to a five-point Likert scale ranging from strongly disagree (1) to strongly agree (5). To analyze attitudes of respondents, simple and descriptive statistics were used. The main findings highlight the differences in respondent perception of 3D body scanning, using 3D body scanning in Internet shopping, online apparel shopping habits regarding their body sizes.

Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

The Appeal of Vocal Islamism in the West: The Case of Hizb ut-Tahrir vis-à-vis Its Competitors

Islamism is a very debated topic in the West but almost exclusively explored in its violent forms. Nevertheless, a number of “vocal radical Islamist” groups exist in the West and legally operate because of their non-violent nature. Vocal radicals continually inspire individuals and lead them towards specific goals and priorities, sometimes even towards violence. This paper uses the long-living group Hizb ut-Tahrir (HT) to explore the elements that make the organization appealing to segments of Muslim community in the West. This paper uses three agency variables - reflexive monitoring, the rationalization of action and the motivations for actions – to analyze HT’s appeal vis-à-vis two other Islamist groups, Ikhwan al-Muslimun and Jamaat-e-Islami (JeI), having similar goals and the same high international profile. This paper concludes that HT’s uniqueness is given by its method, detailed vision of the caliphate, consistency over time and the emphasis placed on the caliphate as the leading force of HT’s unchanged motivation for action.

Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Effect of Different Salts on Pseudomonas taetrolens’ Ability to Lactobionic Acid Production

Lactobionic acid is a disaccharide formed from gluconic acid and galactose, and produced by oxidation of lactose. Productivity of lactobionic acid by microbial synthesis can be affected by various factors, and one of them is a presence of potassium, magnesium and manganese ions. In order to extend lactobionic acid production efficiency, it is necessary to increase the yield of lactobionic acid by optimising the fermentation conditions and available substrates for Pseudomonas taetrolens growth. The object of the research was to determinate the application of K2HPO4, MnSO4, MgSO4 × 7H2O salts in different concentration for effective lactose oxidation to lactobionic acid by Pseudomonas taetrolens. Pseudomonas taetrolens NCIB 9396 (NCTC, England) and Pseudomonas taetrolens DSM 21104 (DSMZ, Germany) were used for the study. The acid whey was used as the study object. The content of lactose in whey samples was determined using MilcoScanTM Mars (Foss, Denmark) and high performance liquid chromatography (Shimadzu LC 20 Prominence, Japan). The content of lactobionic acid in whey samples was determined using the high performance liquid chromatography. The impact of studied salts differs, Mn2+ and Mg2+ ions enhanced fermentation instead of K+ ions. Results approved that Mn2+ and Mg2+ ions are necessary for Pseudomonas taetrolens growth. The study results will help to improve the effectiveness of lactobionic acid production with Pseudomonas taetrolens NCIB 9396 and DSM 21104.

The South African Polycentric Water Resource Governance-Management Nexus: Parlaying an Institutional Agent and Structured Social Engagement

South Africa, a water scarce country, experiences the phenomenon that its life supporting natural water resources is seriously threatened by the users that are totally dependent on it. South Africa is globally applauded to have of the best and most progressive water laws and policies. There are however growing concerns regarding natural water resource quality deterioration and a critical void in the management of natural resources and compliance to policies due to increasing institutional uncertainties and failures. These are in accordance with concerns of many South African researchers and practitioners that call for a change in paradigm from talk to practice and a more constructive, practical approach to governance challenges in the management of water resources. A qualitative theory-building case study through longitudinal action research was conducted from 2014 to 2017. The research assessed whether a strategic positioned institutional agent can be parlayed to facilitate and execute WRM on catchment level by engaging multiple stakeholders in a polycentric setting. Through a critical realist approach a distinction was made between ex ante self-deterministic human behaviour in the realist realm, and ex post governance-management in the constructivist realm. A congruence analysis, including Toulmin’s method of argumentation analysis, was utilised. The study evaluated the unique case of a self-steering local water management institution, the Impala Water Users Association (WUA) in the Pongola River catchment in the northern part of the KwaZulu-Natal Province of South Africa. Exploiting prevailing water resource threats, it expanded its ancillary functions from 20,000 to 300,000 ha. Embarking on WRM activities, it addressed natural water system quality assessments, social awareness, knowledge support, and threats, such as: soil erosion, waste and effluent into water systems, coal mining, and water security dimensions; through structured engagement with 21 different catchment stakeholders. By implementing a proposed polycentric governance-management model on a catchment scale, the WUA achieved to fill the void. It developed a foundation and capacity to protect the resilience of the natural environment that is critical for freshwater resources to ensure long-term water security of the Pongola River basin. Further work is recommended on appropriate statutory delegations, mechanisms of sustainable funding, sufficient penetration of knowledge to local levels to catalyse behaviour change, incentivised support from professionals, back-to-back expansion of WUAs to alleviate scale and cost burdens, and the creation of catchment data monitoring and compilation centres.

River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Design of Compact Dual-Band Planar Antenna for WLAN Systems

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study

Nanotherapy is an actual newest mode of treatment numerous diseases using nanoparticles (NPs) loading with different pharmaceuticals. NPs of biodegradable polymeric micelles (PMs) are gaining increased attention for their numerous and attractive abilities to be used in a variety of applications in the various fields of medicine. The present paper deals with the synthesis of a class of biodegradable micelle-forming polymers, namely ABA triblock-copolymer in which A-blocks represent amino-poly(ethylene glycol) (H2N-PEG) and B-block is biodegradable amino acid-based poly(ester amide) constituted of α-amino acid – L-phenylalanine. The obtained copolymer formed micelles of 70±4 nm size at 10 mg/mL concentration.

Analyzing Irbid’s Food Waste as Feedstock for Anaerobic Digestion

Food waste samples from Irbid were collected from 5 different sources for 12 weeks to characterize their composition in terms of four food categories; rice, meat, fruits and vegetables, and bread. Average food type compositions were 39% rice, 6% meat, 34% fruits and vegetables, and 23% bread. Methane yield was also measured for all food types and was found to be 362, 499, 352, and 375 mL/g VS for rice, meat, fruits and vegetables, and bread, respectively. A representative food waste sample was created to test the actual methane yield and compare it to calculated one. Actual methane yield (414 mL/g VS) was greater than the calculated value (377 mL/g VS) based on food type proportions and their specific methane yield. This study emphasizes the effect of the types of food and their proportions in food waste on the final biogas production. Findings in this study provide representative methane emission factors for Irbid’s food waste, which represent as high as 68% of total Municipal Solid Waste (MSW) in Irbid, and also indicate the energy and economic value within the solid waste stream in Irbid.

Laboratory Investigation of the Pavement Condition in Lebanon: Implementation of Reclaimed Asphalt Pavement in the Base Course and Asphalt Layer

The road network in the north of Lebanon is a prime example of the lack of pavement design and execution in Lebanon.  These roads show major distresses and hence, should be tested and evaluated. The aim of this research is to investigate and determine the deficiencies in road surface design in Lebanon, and to propose an environmentally friendly asphalt mix design. This paper consists of several parts: (i) evaluating pavement performance and structural behavior, (ii) identifying the distresses using visual examination followed by laboratory tests, (iii) deciding the optimal solution where rehabilitation or reconstruction is required and finally, (iv) identifying a sustainable method, which uses recycled material in the proposed mix. The asphalt formula contains Reclaimed Asphalt Pavement (RAP) in the base course layer and in the asphalt layer. Visual inspection of the roads in Tripoli shows that these roads face a high level of distress severity. Consequently, the pavement should be reconstructed rather than simply rehabilitated. Coring was done to determine the pavement layer thickness. The results were compared to the American Association of State Highway and Transportation Officials (AASHTO) design methodology and showed that the existing asphalt thickness is lower than the required asphalt thickness. Prior to the pavement reconstruction, the road materials were tested according to the American Society for Testing and Materials (ASTM) specification to identify whether the materials are suitable. Accordingly, the ASTM tests that were performed on the base course are Sieve analysis, Atterberg limits, modified proctor, Los Angeles, and California Bearing Ratio (CBR) tests. Results show a CBR value higher than 70%. Hence, these aggregates could be used as a base course layer. The asphalt layer was also tested and the results of the Marshall flow and stability tests meet the ASTM specifications. In the last section, an environmentally friendly mix was proposed. An optimal RAP percentage of 30%, which produced a well graded base course and asphalt mix, was determined through a series of trials.

Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Foot Recognition Using Deep Learning for Knee Rehabilitation

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Energy Consumption, Emission Absorption and Carbon Emission Reduction on Semarang State University Campus

Universitas Negeri Semarang (UNNES) is a university with a vision of conservation. The impact of the UNNES conservation is the existence of a positive response from the community for the effort of greening the campus and the planting of conservation value in the academic community. But in reality,  energy consumption in UNNES campus tends to increase. The objectives of the study were to analyze the energy consumption in the campus area, to analyze the absorption of emissions by trees and the awareness of UNNES citizens in reducing emissions. Research focuses on energy consumption, carbon emissions, and awareness of citizens in reducing emissions. Research subjects in this study are UNNES citizens (lecturers, students and employees). The research area covers 6 faculties and one administrative center building. Data collection is done by observation, interview and documentation. The research used a quantitative descriptive method to analyze the data. The number of trees in UNNES is 10,264. Total emission on campus UNNES is 7.862.281.56 kg/year, the tree absorption is 6,289,250.38 kg/year. In UNNES campus area there are still 1,575,031.18 kg/year of emissions, not yet absorbed by trees. There are only two areas of the faculty whose trees are capable of absorbing emissions. The awareness of UNNES citizens in reducing energy consumption is seen in change the habit of: using energy-saving equipment (65%); reduce energy consumption per unit (68%); do energy literacy for UNNES citizens (74%). UNNES leaders always provide motivation to the citizens of UNNES, to reduce and change patterns of energy consumption.