Inverter Based Gain-Boosting Fully Differential CMOS Amplifier

This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7o with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs.

Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles

The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0o, 30o, 45o, and 60o. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket.  

An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Complexity in Managing Higher Education Institutions in Mexico: A System Dynamics Approach

This paper analyses managing higher education institutions in emerging economies. The paper investigates the case of postgraduate studies development at public universities. In so doing, it adopts the complex theory approach to evaluate how postgraduate studies have evolved in these countries. The investigation suggests that the postgraduate studies sector at public universities can be seen as a complex adaptive system (CAS). Therefore, the paper adopts system dynamics (SD) methods to develop this analysis. The case of postgraduate studies at Universidad Michoacana de San Nicolás de Hidalgo in Mexico is investigated in this paper.

Comparison of Different Techniques to Estimate Surface Soil Moisture

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Steering Velocity Bounded Mobile Robots in Environments with Partially Known Obstacles

This paper presents a method for steering velocity bounded mobile robots in environments with partially known stationary obstacles. The exact location of obstacles is unknown and only a probability distribution associated with the location of the obstacles is known. Kinematic model of a 2-wheeled differential drive robot is used as the model of mobile robot. The presented control strategy uses the Artificial Potential Field (APF) method for devising a desired direction of movement for the robot at each instant of time while the Constrained Directions Control (CDC) uses the generated direction to produce the control signals required for steering the robot. The location of each obstacle is considered to be the mean value of the 2D probability distribution and similarly, the magnitude of the electric charge in the APF is set as the trace of covariance matrix of the location probability distribution. The method not only captures the challenges of planning the path (i.e. probabilistic nature of the location of unknown obstacles), but it also addresses the output saturation which is considered to be an important issue from the control perspective. Moreover, velocity of the robot can be controlled during the steering. For example, the velocity of robot can be reduced in close vicinity of obstacles and target to ensure safety. Finally, the control strategy is simulated for different scenarios to show how the method can be put into practice.

Achieving Design-Stage Elemental Cost Planning Accuracy: Case Study of New Zealand

An aspect of client expenditure management that requires attention is the level of accuracy achievable in design-stage elemental cost planning. This has been a major concern for construction clients and practitioners in New Zealand (NZ). Pre-tender estimating inaccuracies are significantly influenced by the level of risk information available to estimators. Proper cost planning activities should ensure the production of a project’s likely construction costs (initial and final), and subsequent cost control activities should prevent unpleasant consequences of cost overruns, disputes and project abandonment. If risks were properly identified and priced at the design stage, observed variance between design-stage elemental cost plans (ECPs) and final tender sums (FTS) (initial contract sums) could be reduced. This study investigates the variations between design-stage ECPs and FTS of construction projects, with a view to identifying risk factors that are responsible for the observed variance. Data were sourced through interviews, and risk factors were identified by using thematic analysis. Access was obtained to project files from the records of study participants (consultant quantity surveyors), and document analysis was employed in complementing the responses from the interviews. Study findings revealed the discrepancies between ECPs and FTS in the region of -14% and +16%. It is opined in this study that the identified risk factors were responsible for the variability observed. The values obtained from the analysis would enable greater accuracy in the forecast of FTS by Quantity Surveyors. Further, whilst inherent risks in construction project developments are observed globally, these findings have important ramifications for construction projects by expanding existing knowledge on what is needed for reasonable budgetary performance and successful delivery of construction projects. The findings contribute significantly to the study by providing quantitative confirmation to justify the theoretical conclusions generated in the literature from around the world. This therefore adds to and consolidates existing knowledge.

Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures

Snails are considered as suitable diagnostic organisms for heavy metal–contaminated sites. Biomphalaria alexandrina snails are used in this work as pollution bioindicators after exposure to chemical mixtures consisted of heavy metals (HM); zinc (Zn), copper (Cu) and lead (Pb); and persistent organic pollutants; Decabromodiphenyl ether 98% (D) and Aroclor 1254 (A). The impacts of these tested chemicals, individual and mixtures, on liver and kidney functions, antioxidant enzymes, complete blood picture, and tissue histology were studied. Results showed that Cu was proved to be the highly toxic against snails than Zn and Pb where LC50 values were 1.362, 213.198 and 277.396 ppm, respectively. Also, B. alexandrina snails exposed to the mixture of HM (¼ LC5 Cu, Pb and Zn) showed the highest bioaccumulation of Cu and Zn in their whole tissue, the most significant increase in AST, ALT & ALP activities and the highest significant levels of total protein, albumin and globulin. Results showed significant alterations in CAT activity in snail tissue extracts while snail samples exposed to most experimental tests showed significant increase in GST activity. Snail samples that exposed to HM mixtures showed a significant decrease in total hemocytes count while snail samples that exposed to mixtures containing A & D showed a significant increase in total hemocytes and Hyalinocytes. Histopathological alterations in snail samples exposed to individual HM and their mixtures for 4 weeks showed degeneration, edema, hyper trophy and vaculation in head-foot muscle, degeneration and necrotic changes in the digestive gland and accumulation in most tested organs. Also, the hermaphrodite gland showed mature ova with irregular shape and reduction in sperm number. In conclusion, the resulted damage and alterations in B. alexandrina studied parameters can be used as bioindicators to the presence of pollutants in its habitats.

Microbial Assessment of Fenugreek Paste during Storage and Antimicrobial Effect of Greek Clover, Trigonella foenum-graecum

In this study, antimicrobial effect of Greek clover was determined with usage of MIC (minimum inhibition concentration) and agar diffusion method. Moreover, pH, water activity and microbial change were determined during storage of fenugreek paste. At first part of our study, microbial load of spices was evaluated. Two different fenugreek pastes were produced with mixing of Greek clover, spices, garlic and water. Fenugreek pastes were stored at 4 °C. At the second part, antimicrobial effect of Greek clover was determined on Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Debaryomyces hansenii, Aspergillus parasiticus, Candida rugosa, Mucor spp., when the concentrations of Greek clover were 8%, 12% and 16%. According to the results obtained, mould growth was determined at 15th and 30th days of storage in first and second fenugreek samples, respectively. Greek clover showed only antifungal effect on Aspergillus parasiticus at previously mentioned concentrations.

Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback

Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.

A Reconfigurable Microstrip Patch Antenna with Polyphase Filter for Polarization Diversity and Cross Polarization Filtering Operation

A reconfigurable microstrip patch antenna with polyphase filter for polarization diversity and cross polarization filtering operation is presented in this paper. In our approach, a polyphase filter is used to obtain the four 90° phase shift outputs to feed a square microstrip patch antenna. The antenna can be switched between four states of polarization in transmission as well as in receiving mode. Switches are interconnected with the polyphase filter network to produce left-hand circular polarization, right-hand circular polarization, horizontal linear polarization, and vertical linear polarization. Additional advantage of using polyphase filter is its filtering capability for cross polarization filtering in right-hand circular polarization and left-hand circular polarization operation. The theoretical and simulated results demonstrated that polyphase filter is a good candidate to drive microstrip patch antenna to accomplish polarization diversity and cross polarization filtering operation.

Biomolecules Based Microarray for Screening Human Endothelial Cells Behavior

Endothelial Progenitor Cell (EPC) based therapies continue to be of interest to treat ischemic events based on their proven role to promote blood vessel formation and thus tissue re-vascularisation. Current strategies for the production of clinical-grade EPCs requires the in vitro isolation of EPCs from peripheral blood followed by cell expansion to provide sufficient quantities EPCs for cell therapy. This study aims to examine the use of different biomolecules to significantly improve the current strategy of EPC capture and expansion on collagen type I (Col I). In this study, four different biomolecules were immobilised on a surface and then investigated for their capacity to support EPC capture and proliferation. First, a cell microarray platform was fabricated by coating a glass surface with epoxy functional allyl glycidyl ether plasma polymer (AGEpp) to mediate biomolecule binding. The four candidate biomolecules tested were Col I, collagen type II (Col II), collagen type IV (Col IV) and vascular endothelial growth factor A (VEGF-A), which were arrayed on the epoxy-functionalised surface using a non-contact printer. The surrounding area between the printed biomolecules was passivated with polyethylene glycol-bisamine (A-PEG) to prevent non-specific cell attachment. EPCs were seeded onto the microarray platform and cell numbers quantified after 1 h (to determine capture) and 72 h (to determine proliferation). All of the extracellular matrix (ECM) biomolecules printed demonstrated an ability to capture EPCs within 1 h of cell seeding with Col II exhibiting the highest level of attachment when compared to the other biomolecules. Interestingly, Col IV exhibited the highest increase in EPC expansion after 72 h when compared to Col I, Col II and VEGF-A. These results provide information for significant improvement in the capture and expansion of human EPC for further application.

Dual Role of Women and Its Influence on Farmers’ Household Income and Consumption Pattern: Study of Informal Women Workers in the District Mandalle, Pangkep, South Sulawesi Province

Today, the number of women who seek additional income to help her husband is increasing. They do that in order to be able to express themselves in the midst of the family and society. Nonetheless, housewives are in charge of managing family’s income and prepare food for the family. The objective of this research is 1) to analyze the effect of the dual role of women to household income and 2) to analyze the effect of the dual role to consumption patterns. The study used a qualitative approach, data collection techniques are through observation, interviews, and documentation on farming households. The data was analysed qualitative descriptively. The results found that: 1) The revenue contribution of women who play double role in the informal sector amounted to 34.07% (less than 50%). 2) The main reason that the respondents worked in the informal sector is to be able to send their children to school (34%) and to improve household economy condition (28%). 3) After earning additional income, respondents said that they can contribute to increase the family’s income and to cover the family shortage (82%); 4) Respondents’ opinion to changes in food consumption after performing the dual role is the ability to purchase and provide the desired food (44%) and changing patterns of consumption per day (30%).

Isolation of a Bacterial Community with High Removal Efficiencies of the Insecticide Bendiocarb

Bendiocarb is a known toxic xenobiotic that presents acute and chronic risks for freshwater invertebrates and estuarine and marine biota; thus, the treatment of water contaminated with the insecticide is of concern. In this paper, a bacterial community with the capacity to grow in bendiocarb as its sole carbon and nitrogen source was isolated by enrichment techniques in batch culture, from samples of a composting plant located in the northeast of Mexico City. Eight cultivable bacteria were isolated from the microbial community, by PCR amplification of 16 rDNA; Pseudoxanthomonas spadix (NC_016147.2, 98%), Ochrobacterium anthropi (NC_009668.1, 97%), Staphylococcus capitis (NZ_CP007601.1, 99%), Bosea thiooxidans. (NZ_LMAR01000067.1, 99%), Pseudomonas denitrificans. (NC_020829.1, 99%), Agromyces sp. (NZ_LMKQ01000001.1, 98%), Bacillus thuringiensis. (NC_022873.1, 97%), Pseudomonas alkylphenolia (NZ_CP009048.1, 98%). NCBI accession numbers and percentage of similarity are indicated in parentheses. These bacteria were regarded as the isolated species for having the best similarity matches. The ability to degrade bendiocarb by the immobilized bacterial community in a packed bed biofilm reactor, using as support volcanic stone fragments (tezontle), was evaluated. The reactor system was operated in batch using mineral salts medium and 30 mg/L of bendiocarb as carbon and nitrogen source. With this system, an overall removal efficiency (ηbend) rounding 90%, was reached.

Numerical Analysis of Geosynthetic-Encased Stone Columns under Laterally Loads

Out of all methods for ground improvement, stone column became more popular these days due to its simple construction and economic consideration. Installation of stone column especially in loose fine graded soil causes increasing in load bearing capacity and settlement reduction. Encased granular stone columns (EGCs) are commonly subjected to vertical load. However, they may also be subjected to significant amount of shear loading. In this study, three-dimensional finite element (FE) analyses were conducted to estimate the shear load capacity of EGCs in sandy soil. Two types of different cases, stone column and geosynthetic encased stone column were studied at different normal pressures varying from 15 kPa to 75 kPa. Also, the effect of diameter in two cases was considered. A close agreement between the experimental and numerical curves of shear stress - horizontal displacement trend line is observed. The obtained result showed that, by increasing the normal pressure and diameter of stone column, higher shear strength is mobilized by soil; however, in the case of encased stone column, increasing the diameter had more dominated effect in mobilized shear strength.

The Use of Mobile Phone as Enhancement to Mark Multiple Choice Objectives English Grammar and Literature Examination: An Exploratory Case Study of Preliminary National Diploma Students, Abdu Gusau Polytechnic, Talata Mafara, Zamfara State, Nigeria

Most often, marking and assessment of multiple choice kinds of examinations have been opined by many as a cumbersome and herculean task to accomplished manually in Nigeria. Usually this may be in obvious nexus to the fact that mass numbers of candidates were known to take the same examination simultaneously. Eventually, marking such a mammoth number of booklets dared and dread even the fastest paid examiners who often undertake the job with the resulting consequences of stress and boredom. This paper explores the evolution, as well as the set aim to envision and transcend marking the Multiple Choice Objectives- type examination into a thing of creative recreation, or perhaps a more relaxing activity via the use of the mobile phone. A more “pragmatic” dimension method was employed to achieve this work, rather than the formal “in-depth research” based approach due to the “novelty” of the mobile-smartphone e-Marking Scheme discovery. Moreover, being an evolutionary scheme, no recent academic work shares a direct same topic concept with the ‘use of cell phone as an e-marking technique’ was found online; thus, the dearth of even miscellaneous citations in this work. Additional future advancements are what steered the anticipatory motive of this paper which laid the fundamental proposition. However, the paper introduces for the first time the concept of mobile-smart phone e-marking, the steps to achieve it, as well as the merits and demerits of the technique all spelt out in the subsequent pages.