ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy

As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.

Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Innovation Strategies and Challenges in Emerging Economies: The Case of Research and Technology Organizations in Turkey

Innovation is highly critical for every company, especially for technology-based organizations looking to sustain their competitive advantage. However, this is not an easy task. Regardless of the size of the enterprise, market and location, all organizations face numerous challenges. Even though huge barriers to innovation exist in different countries, firm- and industry-specific challenges can be distinguished. This paper examines innovation strategies and obstacles to innovation in research and technology organizations (RTO) of Turkey. From the most important to the least, nine different challenges are ranked according the results of this survey. The findings reveal that to take the lead in innovation, financial constraint is the biggest challenge, which is consistent with the related literature. It ranked number one in this study. Beyond that, based on a sample of 40 RTOs, regional challenges such as underdeveloped regional innovation ecosystem plays a significant role in hampering innovation. Most of the organizations (55%) embrace an incremental approach to innovation, while only few pursue radical shifts. About 40% of the RTOs focus on product innovation, and 27.5% of them concentrate on technological innovation, while a very limited number aim for operational excellence and customer engagement as the focus of their strategic innovation efforts.

Carcinogenic Polycyclic Aromatic Hydrocarbons in Urban Air Particulate Matter

An assessment of the air quality of Győr (Hungary) was performed by determining the ambient concentrations of PM10-bound carcinogenic polycyclic aromatic hydrocarbons (cPAHs) in different seasons. A high volume sampler was used for the collection of ambient aerosol particles, and the associated cPAH compounds (benzo[a]pyrene (BaP), benzo[a]anthracene, benzofluoranthene isomers, indeno[123-cd]pyrene and dibenzo[ah]anthracene) were analyzed by a gas chromatographic method. Higher mean concentrations of total cPAHs were detected in samples collected in winter (9.62 ng/m3) and autumn (2.69 ng/m3) compared to spring (1.05 ng/m3) and summer (0.21 ng/m3). The calculated BaP toxic equivalent concentrations have also reflected that the local population appears to be exposed to significantly higher cancer risk in the heating seasons. Moreover, the concentration levels of cPAHs determined in this study were compared to other Hungarian urban sites.

Effects of the In-Situ Upgrading Project in Afghanistan: A Case Study on the Formally and Informally Developed Areas in Kabul

Cities in Afghanistan have been rapidly urbanized; however, many parts of these cities have been developed with no detailed land use plan or infrastructure. In other words, they have been informally developed without any government leadership. The new government started the In-situ Upgrading Project in Kabul to upgrade roads, the water supply network system, and the surface water drainage system on the existing street layout in 2002, with the financial support of international agencies. This project is an appropriate emergency improvement for living life, but not an essential improvement of living conditions and infrastructure problems because the life expectancies of the improved facilities are as short as 10–15 years, and residents cannot obtain land tenure in the unplanned areas. The Land Readjustment System (LRS) conducted in Japan has good advantages that rearrange irregularly shaped land lots and develop the infrastructure effectively. This study investigates the effects of the In-situ Upgrading Project on private investment, land prices, and residents’ satisfaction with projects in Kart-e-Char, where properties are registered, and in Afshar-e-Silo Lot 1, where properties are unregistered. These projects are located 5 km and 7 km from the CBD area of Kabul, respectively. This study discusses whether LRS should be applied to the unplanned area based on the questionnaire and interview responses of experts experienced in the In-situ Upgrading Project who have knowledge of LRS. The analysis results reveal that, in Kart-e-Char, a lot of private investment has been made in the construction of medium-rise (five- to nine-story) buildings for commercial and residential purposes. Land values have also incrementally increased since the project, and residents are commonly satisfied with the road pavement, drainage systems, and water supplies, but dissatisfied with the poor delivery of electricity as well as the lack of public facilities (e.g., parks and sport facilities). In Afshar-e-Silo Lot 1, basic infrastructures like paved roads and surface water drainage systems have improved from the project. After the project, a few four- and five-story residential buildings were built with very low-level private investments, but significant increases in land prices were not evident. The residents are satisfied with the contribution ratio, drainage system, and small increase in land price, but there is still no drinking water supply system or tenure security; moreover, there are substandard paved roads and a lack of public facilities, such as parks, sport facilities, mosques, and schools. The results of the questionnaire and interviews with the four engineers highlight the problems that remain to be solved in the unplanned areas if LRS is applied—namely, land use differences, types and conditions of the infrastructure still to be installed by the project, and time spent for positive consensus building among the residents, given the project’s budget limitation.

An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Hydrological Characterization of a Watershed for Streamflow Prediction

In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.

Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons

In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.

Thermography Evaluation on Facial Temperature Recovery after Elastic Gum

Thermography is a non-radiating and contact-free technology which can be used to monitor skin temperature. The efficiency and safety of thermography technology make it a useful tool for detecting and locating thermal changes in skin surface, characterized by increases or decreases in temperature. This work intends to be a contribution for the use of thermography as a methodology for evaluation of skin temperature in the context of orofacial biomechanics. The study aims to identify the oscillations of skin temperature in the left and right hemiface regions of the masseter muscle, during and after thermal stimulus, and estimate the time required to restore the initial temperature after the application of the stimulus. Using a FLIR T430sc camera, a data acquisition protocol was followed with a group of eight volunteers, aged between 22 and 27 years. The tests were performed in a controlled environment with the volunteers in a comfortably static position. The thermal stimulus involves the use of an ice volume with controlled size and contact surface. The skin surface temperature was recorded in two distinct situations, namely without further stimulus and with the additions of a stimulus obtained by a chewing gum. The data obtained were treated using FLIR Research IR Max software. The time required to recover the initial temperature ranged from 20 to 52 minutes when no stimulus was added and varied between 8 and 26 minutes with the chewing gum stimulus. These results show that recovery is faster with the addition of the stimulus and may guide clinicians regarding the pre and post-operative times with ice therapy, in the presence or absence of mechanical stimulus that increases muscle functions (e.g. phonetics or mastication).

A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Disidentification of Historical City Centers: A Comparative Study of the Old and New Settlements of Mardin, Turkey

Mardin is one of the unique cities in Turkey with its rich cultural and historical heritage. Mardin’s traditional dwellings have been affected both by natural data such as climate and topography and by cultural data like lifestyle and belief. However, in the new settlements, housing is formed with modern approaches and unsuitable forms clashing with Mardin’s culture and environment. While the city is expanding, traditional textures are ignored. Thus, traditional settlements are losing their identity and are vanishing because of the rapid change and transformation. The main aim of this paper is to determine the physical and social data needed to define the characteristic features of Mardin’s old and new settlements. In this context, based on social and cultural data, old and new settlement formations of Mardin have been investigated from various aspects. During this research, the following methods have been utilized: observations, interviews, public surveys, literature review, as well as site examination via maps, photographs and questionnaire methodology. In conclusion, this paper focuses on how changes in the physical forms of cities affect the typology and the identity of cities, as in the case of Mardin.

Motivating Factors and Prospects for Rural Community Involvement in Entrepreneurship: Evidence from Mantanani Island, Sabah, Malaysia

In Malaysia, particularly in Sabah, the government has been promoting entrepreneurship among rural people to encourage them to earn their living by making good use of the diverse natural resources and local cultures of Sabah. Nevertheless, despite the government’s aim to encourage more local community in rural area to involve in entrepreneurship, the involvement of community in entrepreneurial activity is still low. It is crucial to identify the factors stimulate (or prevent) the involvement of rural community in Sabah in entrepreneurial activity. Therefore, this study tries to investigate the personal and contextual factors that may have impact on decision to start a business among the local community in Mantanani Island. In addition, this study also aims to identify the perceived benefits they receive from entrepreneurial activity. A structured face-to-face interview was conducted with 61 local communities in Mantanani Island. Data analysis revealed that passion, personal skills and self-confidence are the significant internal factors to entrepreneurial activity, whereas access to finance, labour and infrastructure are the significant external factors that are found to influence entrepreneurship. In terms of perceived rewards they received from taking up small business, it was found that respondents are predominantly agreed that entrepreneurship offers financial benefit than non-financial. In addition, this study also offers several suggestions for entrepreneurship development in Mantanani Island and it is hoped that this study may help the related agency to develop effective support policies in order to encourage more people in rural area to involve in entrepreneurship.

Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator

The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.

Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils

Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils

Radio Regulation Development and Radio Spectrum Analysis of Earth Station in Motion Service

Although Earth Station in Motion (ESIM) services are widely used and there is a huge market demand around the world, International Telecommunication Union (ITU) does not have unified conclusion for the use of ESIM yet. ESIM are Mobile Satellite Services (MSS) due to its mobile-based attributes, while multiple administrations want to use ESIM in Fixed Satellite Service (FSS). However, Radio Regulations (RR) have strict distinction between MSS and FSS. In this case, ITU has been very controversial because this kind of application will violate the RR Article and the conflict will bring risks to the global deployment. Thus, this paper illustrates the development of rules, regulations, standards concerning ESIM and the radio spectrum usage of ESIM in different regions around the world. Firstly, the basic rules, standard and definition of ITU’s Radiocommunication Sector (ITU-R) is introduced. Secondly, the World Radiocommunication Conference (WRC) agenda item on radio spectrum allocation for ESIM, e.g. in C/Ku/Ka band, is introduced and multi-view on the radio spectrum allocation is elaborated, especially on 19.7-20.2 GHz & 29.5-30.0 GHz. Then, some ITU-R Recommendations and Reports are analyzed on the specific technique to enable these ESIM to communicate with Geostationary Earth Orbit Satellite (GSO) space stations in the FSS without causing interference at levels in excess of that caused by conventional FSS earth stations. Meanwhile, the opposite opinion on not allocating EISM service in FSS frequency band is also elaborated. Finally, based on the ESIM’s future application, the ITU-R standards development trend is forecasted. In conclusion, using radio spectrum resource in an equitable, rational and efficient manner is the basic guideline of ITU. Although it is not a good approach to obstruct the revise of RR when there is a large demand for radio spectrum resource in satellite industry, still the propulsion and global demand of the whole industry may face difficulties on the unclear application in modify rules of RR.

Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective

The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.

The Fiscal and Macroeconomic Impacts of Reforming Energy Subsidy Policy in Malaysia

The rationalization of a gradual subsidies reforms plan has been set out by the Malaysian government to achieve the high-income nation target. This paper attempts to analyze the impacts of energy subsidy reform policy on fiscal deficit and macroeconomics variables in Malaysia. The Computable General Equilibrium (CGE) Model is employed. Three simulations based on different groups of scenarios have been developed. Importantly, the overall results indicate that removal of fuel subsidy has significantly improved the real GDP and reduced the government fiscal deficit. On the other hand, the removal of the fuel subsidy has increased most of the local commodity prices, especially energy commodities. The findings of the study could provide some imperative inputs for policy makers, especially to identify the right policy mechanism. This is especially ensures the subsidy savings from subsidy removal could be transferred back into the domestic economy in the form of infrastructure development, compensation and increases in others sector output contributions towards a sustainable economic growth.

Characteristics of Ozone Generated from Dielectric Barrier Discharge Plasma Actuators

Dielectric barrier discharge plasma actuators (DBD-PAs) have been developed for active flow control devices. However, it is necessary to reduce ozone produced by DBD toward practical applications using DBD-PAs. In this study, variations of ozone concentration, flow velocity, power consumption were investigated by changing exposed electrodes of DBD-PAs. Two exposed electrode prototypes were prepared: span-type with exposed electrode width of 0.1 mm, and normal-type with width of 5 mm. It was found that span-type shows lower power consumption and higher flow velocity than that of normal-type at Vp-p = 4.0-6.0 kV. Ozone concentration of span-type higher than normal-type at Vp-p = 4.0-8.0 kV. In addition, it was confirmed that catalyst located in downstream from the exposed electrode can reduce ozone concentration between 18 and 42% without affecting the induced flow.

Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.