Small Farm Diversification Opportunities in Viticulture-Winemaking Sector of Georgia

The paper analyses the role of small farms in socio-economic development of agriculture in Georgia and evaluates modern concepts regarding the development of the farms of this size. The scale of farms in Georgia is studied and the major problems are revealed. Opportunities and directions of diversification are discussed from the point of increasing the share of Georgian grapes and wine both on domestic and international markets. It’s shown that the size of vineyard areas is directly reflected on the grape and wine production potential. Accordingly, vineyard area and grape production dynamics is discussed. Comparative analysis of small farms in Georgia and Italy is made and the major differences are identified. Diversification is evaluated based on cost-benefit analysis on the one hand and on the other hand, from the point of promoting economic activities, protecting nature and rural area development. The paper provides proofs for the outcomes of diversification. The key hindering factors for the development of small farms are identified and corresponding conclusions are made, based on which recommendations for diversification of the farms of this size are developed.

Optimized Algorithm for Particle Swarm Optimization

Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.

Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring

A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.

Benefits of Construction Management Implications and Processes by Projects Managers on Project Completion

Projects managers in construction industry usually face a difficult organizational environment especially if the project is unique. The organization lacks the processes to practice construction management correctly, and the executive’s technical managers who have lack of experience in playing their role and responsibilities correctly. Project managers need to adopt best practices that allow them to do things effectively to make sure that the project can be delivered without any delay even though the executive’s technical managers should follow a certain process to avoid any factor might cause any delay during the project life cycle. The purpose of the paper is to examine the awareness level of projects managers about construction management processes, tools, techniques and implications to complete projects on time. The outcome and the results of the study are prepared based on the designed questionnaires and interviews conducted with many project managers. The method used in this paper is a quantitative study. A survey with a sample of 100 respondents was prepared and distributed in a construction company in Dubai, which includes nine questions to examine the level of their awareness. This research will also identify the necessary benefits of processes of construction management that has to be adopted by projects managers to mitigate the maximum potential problems which might cause any delay to the project life cycle.

Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Gas Lift Optimization to Improve Well Performance

Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.

Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization

Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.

Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Affine Combination of Splitting Type Integrators, Implemented with Parallel Computing Methods

In this work we present a family of new convergent type methods splitting high order no negative steps feature that allows your application to irreversible problems. Performing affine combinations consist of results obtained with Trotter Lie integrators of different steps. Some examples where applied symplectic compared with methods, in particular a pair of differential equations semilinear. The number of basic integrations required is comparable with integrators symplectic, but this technique allows the ability to do the math in parallel thus reducing the times of which exemplify exhibiting some implementations with simple schemes for its modularity and scalability process.

A State-Of-The-Art Review on Web Services Adaptation

Web service adaptation involves the creation of adapters that solve Web services incompatibilities known as mismatches. Since the importance of Web services adaptation is increasing because of the frequent implementation and use of online Web services, this paper presents a literature review of web services to investigate the main methods of adaptation, their theoretical underpinnings and the metrics used to measure adapters performance. Eighteen publications were reviewed independently by two researchers. We found that adaptation techniques are needed to solve different types of problems that may arise due to incompatibilities in Web service interfaces, including protocols, messages, data and semantics that affect the interoperability of the services. Although adapters are non-invasive methods that can improve Web services interoperability and there are current approaches for service adaptation; there is, however, not yet one solution that fits all types of mismatches. Our results also show that only a few research projects incorporate theoretical frameworks and that metrics to measure adapters’ performance are very limited. We conclude that further research on software adaptation should improve current adaptation methods in different layers of the service interoperability and that an adaptation theoretical framework that incorporates a theoretical underpinning and measures of qualitative and quantitative performance needs to be created.

Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength

Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.

Exploring Counting Methods for the Vertices of Certain Polyhedra with Uncertainties

Vertex Enumeration Algorithms explore the methods and procedures of generating the vertices of general polyhedra formed by system of equations or inequalities. These problems of enumerating the extreme points (vertices) of general polyhedra are shown to be NP-Hard. This lead to exploring how to count the vertices of general polyhedra without listing them. This is also shown to be #P-Complete. Some fully polynomial randomized approximation schemes (fpras) of counting the vertices of some special classes of polyhedra associated with Down-Sets, Independent Sets, 2-Knapsack problems and 2 x n transportation problems are presented together with some discovered open problems.

Applications of Mobile Aluminum Light Structure Housing System in Sustainable Building Process

Problems exist in the present construction industry in China. Conflicts hinder the development of the whole society, such as contradictions between resource reservation and a huge population, living space needs and low building production efficiency, as well as environment protection and high pollution production pattern. In order to solve the problems and find a solution, research is needed to explore a building system. By investigating the whole architectural process and contrasting analysis of light structures and heavy structures, the paper raised the concepts to cope with the existing challenges, such as design conception based on product and real construction processes, design methods focusing on components, and maximum utilization of the temporary building by optimizing the construction speed and building performance. The project was not only designed in virtual reality, but was also physically constructed in the real world. A series of aluminum light structure housing systems were dictated at last, with the characteristics of high performance, extremely rapid construction speed and also flexible function. It can be used in lots of aspects ranging from a single building in a remote area to a large residential community.

Application of Griddization Management to Construction Hazard Management

Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments.

Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

This paper covers application of an elitist selfadaptive step-size search (ESASS) to optimum design of steel skeletal structures. In the ESASS two approaches are considered for improving the convergence accuracy as well as the computational efficiency of the original technique namely the so called selfadaptive step-size search (SASS). Firstly, an additional randomness is incorporated into the sampling step of the technique to preserve exploration capability of the algorithm during the optimization. Moreover, an adaptive sampling scheme is introduced to improve the quality of final solutions. Secondly, computational efficiency of the technique is accelerated via avoiding unnecessary analyses during the optimization process using an upper bound strategy. The numerical results demonstrate the usefulness of the ESASS in the sizing optimization problems of steel truss and frame structures.

Hospital Waste Management Practices: A Case Study in Iran

Hospital waste is a category of waste consisting of infectious and non-infectious waste, which pose environmental and health risks. Therefore, special planning and management is required, due to the potential hazards of them. The lack of valid and comprehensive information regarding the generation and management of hospital waste in Iran is one of the most important problems in this field. This research aimed to evaluate hospital waste management efficiency in Karaj city, Iran. The four greatest hospitals in Karaj city had been selected in this cross-sectional study. Site observations and interviews with employees were implemented. The data was gathered based on the hospital waste management questionnaire which was designed by World Health Organization for developing countries. Collected Data had been analyzed using SPSS software. The average of solid waste which was generated per bed was 2.78 kg, which included 90% of domestic waste and 10% of infectious waste. Based on the quantitative analysis of general and infectious waste in these hospitals, the highest contributors of general waste were consisting of food waste (37.39%), while textile (28.06%) were the highest contributors of the infectious waste. According to the information contained in the questionnaires, the main defects of waste management in these hospitals were; inadequate staff in waste management sector, poorly disinfection of solid waste containers and temporary storage locations, and a lack of proper infectious waste treatment. According to the results of this research, waste management in these hospitals were far from optimum conditions. In order to improve the existing conditions, mentioned problems must be solved quickly, and planning for continuous monitoring in the waste management field in these hospitals should be established.

Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet

In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.

Through the Lens of Forced Displacement: Refugee Women's Rights as Human Rights

While the need for equal access to civil, political as well as economic, social and cultural rights is clear under the international law, the adoption of the Convention on the Elimination of all forms of Discrimination against women in 1979 made this even clearer. Despite this positive progress, the abuse of refugee women's rights is one of the basic underlying root causes of their marginalisation and violence in their countries of asylum. This paper presents a critical review on the development of refugee women's rights at the international levels and national levels. It provides an array of scholarly literature on this issue and examines the measures taken by the international community to curb the problem of violence against women in their various provisions through the instruments set. It is cognizant of the fact that even if conflict affects both refugee women and men, the effects on women refugees are deep-reaching, due to the cultural strongholds they face. An important aspect of this paper is that it is conceptualised against the fact that refugee women face the problem of sexual and gender based first as refugees and second as women, yet, their rights are stumbled upon. Often times they have been rendered "worthless victims" who are only in need of humanitarian assistance than active participants committed to change their plight through their participation in political, economic and social participation in their societies. Scholars have taken notice of the fact that women's rights in refugee settings have been marginalized and call for a need to incorporate their perspectives in the planning and management of refugee settings in which they live. Underpinning this discussion is feminism theory which gives a clear understanding of the root cause of refugee women's problems. Finally, this paper suggests that these policies should be translated into action at local, national international and regional levels to ensure sustainable peace.

An Application of Generalized Fuzzy Soft Sets in a Social Decision Making Problem

At present, application of the extension of soft set theory in decision making problems in day to day life is progressing rapidly. The concepts of fuzzy soft set and its properties have been evolved as an area of interest for the researchers. The generalization of the concepts recently got importance and a rapid growth in the research in this area witnessed its vital-ness. In this paper, an application of the concept of generalized fuzzy soft set to make decision in a social problem is presented. Further, this paper also highlights some of the key issues of the related areas.