A Survey on Life Science Database Citation Frequency in Scientific Literatures

There are so many databases of various fields of life sciences available online. To find well-used databases, a survey to measure life science database citation frequency in scientific literatures is done. The survey is done by measuring how many scientific literatures which are available on PubMed Central archive cited a specific life science database. This paper presents and discusses the results of the survey.

FCA-based Conceptual Knowledge Discovery in Folksonomy

The tagging data of (users, tags and resources) constitutes a folksonomy that is the user-driven and bottom-up approach to organizing and classifying information on the Web. Tagging data stored in the folksonomy include a lot of very useful information and knowledge. However, appropriate approach for analyzing tagging data and discovering hidden knowledge from them still remains one of the main problems on the folksonomy mining researches. In this paper, we have proposed a folksonomy data mining approach based on FCA for discovering hidden knowledge easily from folksonomy. Also we have demonstrated how our proposed approach can be applied in the collaborative tagging system through our experiment. Our proposed approach can be applied to some interesting areas such as social network analysis, semantic web mining and so on.

Universal Metadata Definition

The need to have standards has always been a priority of all the disciplines in the world. Today, standards such as XML and USB are trying to create a universal interface for their respective areas. The information regarding every family in the discipline addressed, must have a lot in common, known as Metadata. A lot of work has been done in specific domains such as IEEE LOM and MPEG-7 but they do not appeal to the universality of creating Metadata for all entities, where we take an entity (object) as, not restricted to Software Terms. This paper tries to address this problem of universal Metadata Definition which may lead to increase in precision of search.

Fast Facial Feature Extraction and Matching with Artificial Face Models

Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.

Training on the Ceasing Intention of Betelnut Addiction

According to the governmental data, the cases of oral cancers doubled in the past 10 years. This had brought heavy burden to the patients- family, the society, and the country. The literature generally evidenced the betel nut contained particular chemicals that can cause oral cancers. Research in Taiwan had also proofed that 90 percent of oral cancer patients had experience of betel nut chewing. It is thus important to educate the betel-nut hobbyists to cease such a hazardous behavior. A program was then organized to establish several training classes across different areas specific to help ceasing this particular habit. Purpose of this research was to explore the attitude and intention toward ceasing betel-nut chewing before and after attending the training classes. 50 samples were taken from a ceasing class with average age at 45 years old with high school education (54%). 74% of the respondents were male in service or agricultural industries. Experiences in betel-nut chewing were 5-20 years with a dose of 1-20 pieces per day. The data had shown that 60% of the respondents had cigarette smoking habit, and 30% of the respondents were concurrently alcoholic dependent. Research results indicated that the attitude, intentions, and the knowledge on oral cancers were found significant different between before and after attendance. This provided evidence for the effectiveness of the training class. However, we do not perform follow-up after the class. Noteworthy is the test result also shown that participants who were drivers as occupation, or habitual smokers or alcoholic dependents would be less willing to quit the betel-nut chewing. The test results indicated as well that the educational levels and the type of occupation may have significant impacts on an individual-s decisions in taking betel-nut or substance abuse.

Determining the Best Method of Stability Landslide by Using of DSS (Case Study: Landslide in Hasan Salaran, Kurdistan Province in Iran)

One of the processes of slope that occurs every year in Iran and some parts of world and cause a lot of criminal and financial harms is called landslide. They are plenty of method to stability landslide in soil and rock slides. The use of the best method with the least cost and in the shortest time is important for researchers. In this research, determining the best method of stability is investigated by using of Decision Support systems. DSS is made for this purpose and was used (for Hasan Salaran area in Kurdistan). Field study data from topography, slope, geology, geometry of landslide and the related features was used. The related data entered decision making managements programs (DSS) (ALES).Analysis of mass stability indicated the instability potential at present. Research results show that surface and sub surface drainage the best method of stabilizing. Analysis of stability shows that acceptable increase in security coefficient is a consequence of drainage.

Six Sigma Solutions and its Benefit-Cost Ratio for Quality Improvement

This is an application research presenting the improvement of production quality using the six sigma solutions and the analyses of benefit-cost ratio. The case of interest is the production of tile-concrete. Such production has faced with the problem of high nonconforming products from an inappropriate surface coating and had low process capability based on the strength property of tile. Surface coating and tile strength are the most critical to quality of this product. The improvements followed five stages of six sigma solutions. After the improvement, the production yield was improved to 80% as target required and the defective products from coating process was remarkably reduced from 29.40% to 4.09%. The process capability based on the strength quality was increased from 0.87 to 1.08 as customer oriented. The improvement was able to save the materials loss for 3.24 millions baht or 0.11 million dollars. The benefits from the improvement were analyzed from (1) the reduction of the numbers of non conforming tile using its factory price for surface coating improvement and (2) the materials saved from the increment of process capability. The benefit-cost ratio of overall improvement was high as 7.03. It was non valuable investment in define, measure, analyses and the initial of improve stages after that it kept increasing. This was due to there were no benefits in define, measure, and analyze stages of six sigma since these three stages mainly determine the cause of problem and its effects rather than improve the process. The benefit-cost ratio starts existing in the improve stage and go on. Within each stage, the individual benefitcost ratio was much higher than the accumulative one as there was an accumulation of cost since the first stage of six sigma. The consideration of the benefit-cost ratio during the improvement project helps make decisions for cost saving of similar activities during the improvement and for new project. In conclusion, the determination of benefit-cost ratio behavior through out six sigma implementation period provides the useful data for managing quality improvement for the optimal effectiveness. This is the additional outcome from the regular proceeding of six sigma.

Electrical Resistivity of Subsurface: Field and Laboratory Assessment

The objective of this paper is to study the electrical resistivity complexity between field and laboratory measurement, in order to improve the effectiveness of data interpretation for geophysical ground resistivity survey. The geological outcrop in Penang, Malaysia with an obvious layering contact was chosen as the study site. Two dimensional geoelectrical resistivity imaging were used in this study to maps the resistivity distribution of subsurface, whereas few subsurface sample were obtained for laboratory advance. In this study, resistivity of samples in original conditions is measured in laboratory by using time domain low-voltage technique, particularly for granite core sample and soil resistivity measuring set for soil sample. The experimentation results from both schemes are studied, analyzed, calibrated and verified, including basis and correlation, degree of tolerance and characteristics of substance. Consequently, the significant different between both schemes is explained comprehensively within this paper.

Concurrent Approach to Data Parallel Model using Java

Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.

Comparative Analysis of the Public Funding for Greek Universities: An Ordinal DEA/MCDM Approach

This study performs a comparative analysis of the 21 Greek Universities in terms of their public funding, awarded for covering their operating expenditure. First it introduces a DEA/MCDM model that allocates the fund into four expenditure factors in the most favorable way for each university. Then, it presents a common, consensual assessment model to reallocate the amounts, remaining in the same level of total public budget. From the analysis it derives that a number of universities cannot justify the public funding in terms of their size and operational workload. For them, the sufficient reduction of their public funding amount is estimated as a future target. Due to the lack of precise data for a number of expenditure criteria, the analysis is based on a mixed crisp-ordinal data set.

Meta-Classification using SVM Classifiers for Text Documents

Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%.

Data Envelopment Analysis with Partially Perfect Objects

This paper presents a simplified version of Data Envelopment Analysis (DEA) - a conventional approach to evaluating the performance and ranking of competitive objects characterized by two groups of factors acting in opposite directions: inputs and outputs. DEA with a Perfect Object (DEA PO) augments the group of actual objects with a virtual Perfect Object - the one having greatest outputs and smallest inputs. It allows for obtaining an explicit analytical solution and making a step to an absolute efficiency. This paper develops this approach further and introduces a DEA model with Partially Perfect Objects. DEA PPO consecutively eliminates the smallest relative inputs or greatest relative outputs, and applies DEA PO to the reduced collections of indicators. The partial efficiency scores are combined to get the weighted efficiency score. The computational scheme remains simple, like that of DEA PO, but the advantage of the DEA PPO is taking into account all of the inputs and outputs for each actual object. Firm evaluation is considered as an example.

Dynamic Bus Binding for Low Power Using Multiple Binding Tables

A conventional binding method for low power in a high-level synthesis mainly focuses on finding an optimal binding for an assumed input data, and obtains only one binding table. In this paper, we show that a binding method which uses multiple binding tables gets better solution compared with the conventional methods which use a single binding table, and propose a dynamic bus binding scheme for low power using multiple binding tables. The proposed method finds multiple binding tables for the proper partitions of an input data, and switches binding tables dynamically to produce the minimum total switching activity. Experimental result shows that the proposed method obtains a binding solution having 12.6-28.9% smaller total switching activity compared with the conventional methods.

An Evolutionary Statistical Learning Theory

Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.

Estimating Development Time of Software Projects Using a Neuro Fuzzy Approach

Software estimation accuracy is among the greatest challenges for software developers. This study aimed at building and evaluating a neuro-fuzzy model to estimate software projects development time. The forty-one modules developed from ten programs were used as dataset. Our proposed approach is compared with fuzzy logic and neural network model and Results show that the value of MMRE (Mean of Magnitude of Relative Error) applying neuro-fuzzy was substantially lower than MMRE applying fuzzy logic and neural network.

X-ray Crystallographic Analysis of MinC N-Terminal Domain from Escherichia coli

MinC plays an important role in bacterial cell division system by inhibiting FtsZ assembly. However, the molecular mechanism of the action is poorly understood. E. coli MinC Nterminus domain was purified and crystallized using 1.4 M sodium citrate pH 6.5 as a precipitant. X-ray diffraction data was collected and processed to 2.3 Å from a native crystal. The crystal belonged to space group P212121, with the unit cell parameters a = 52.7, b = 54.0, c = 64.7 Å. Assuming the presence of two molecules in the asymmetric unit, the Matthews coefficient value is 1.94 Å3 Da-1, which corresponds to a solvent content of 36.5%. The overall structure of MinCN is observed as a dimer form through anti-parallel ß-strand interaction.

Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Effect of Shear Theories on Free Vibration of Functionally Graded Plates

Analytical solution of the first-order and third-order shear deformation theories are developed to study the free vibration behavior of simply supported functionally graded plates. The material properties of plate are assumed to be graded in the thickness direction as a power law distribution of volume fraction of the constituents. The governing equations of functionally graded plates are established by applying the Hamilton's principle and are solved by using the Navier solution method. The influence of side-tothickness ratio and constituent of volume fraction on the natural frequencies are studied. The results are validated with the known data in the literature.

Image Similarity: A Genetic Algorithm Based Approach

The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.

Prediction the Deformation in Upsetting Process by Neural Network and Finite Element

In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process