Academic Program Administration via Semantic Web – A Case Study

Generally, administrative systems in an academic environment are disjoint and support independent queries. The objective in this work is to semantically connect these independent systems to provide support to queries run on the integrated platform. The proposed framework, by enriching educational material in the legacy systems, provides a value-added semantics layer where activities such as annotation, query and reasoning can be carried out to support management requirements. We discuss the development of this ontology framework with a case study of UAE University program administration to show how semantic web technologies can be used by administration to develop student profiles for better academic program management.

Security of Mobile Agent in Ad hoc Network using Threshold Cryptography

In a very simple form a Mobile Agent is an independent piece of code that has mobility and autonomy behavior. One of the main advantages of using Mobile Agent in a network is - it reduces network traffic load. In an, ad hoc network Mobile Agent can be used to protect the network by using agent based IDS or IPS. Besides, to deploy dynamic software in the network or to retrieve information from network nodes Mobile Agent can be useful. But in an ad hoc network the Mobile Agent itself needs some security. Security services should be guaranteed both for Mobile Agent and for Agent Server. In this paper to protect the Mobile Agent and Agent Server in an ad hoc network we have proposed a solution which is based on Threshold Cryptography, a new vibe in the cryptographic world where trust is distributed among multiple nodes in the network.

Probabilistic Method of Wind Generation Placement for Congestion Management

Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.

A Cooperative Weighted Discriminator Energy Detector Technique in Fading Environment

The need in cognitive radio system for a simple, fast, and independent technique to sense the spectrum occupancy has led to the energy detection approach. Energy detector is known by its dependency on noise variation in the system which is one of its major drawbacks. In this paper, we are aiming to improve its performance by utilizing a weighted collaborative spectrum sensing, it is similar to the collaborative spectrum sensing methods introduced previously in the literature. These weighting methods give more improvement for collaborative spectrum sensing as compared to no weighting case. There is two method proposed in this paper: the first one depends on the channel status between each sensor and the primary user while the second depends on the value of the energy measured in each sensor.

A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem

The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.

Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell

This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.

A Reconfigurable Distributed Multiagent System Optimized for Scalability

This paper proposes a novel solution for optimizing the size and communication overhead of a distributed multiagent system without compromising the performance. The proposed approach addresses the challenges of scalability especially when the multiagent system is large. A modified spectral clustering technique is used to partition a large network into logically related clusters. Agents are assigned to monitor dedicated clusters rather than monitor each device or node. The proposed scalable multiagent system is implemented using JADE (Java Agent Development Environment) for a large power system. The performance of the proposed topologyindependent decentralized multiagent system and the scalable multiagent system is compared by comprehensively simulating different fault scenarios. The time taken for reconfiguration, the overall computational complexity, and the communication overhead incurred are computed. The results of these simulations show that the proposed scalable multiagent system uses fewer agents efficiently, makes faster decisions to reconfigure when a fault occurs, and incurs significantly less communication overhead.

Business Rules for Data Warehouse

Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.

110 MW Geothermal Power Plant Multiple Simulator, Using Wireless Technology

A geothermal power plant multiple simulator for operators training is presented. The simulator is designed to be installed in a wireless local area network and has a capacity to train one to six operators simultaneously, each one with an independent simulation session. The sessions must be supervised only by one instructor. The main parts of this multiple simulator are: instructor and operator-s stations. On the instructor station, the instructor controls the simulation sessions, establishes training exercises and supervises each power plant operator in individual way. This station is hosted in a Main Personal Computer (NS) and its main functions are: to set initial conditions, snapshots, malfunctions or faults, monitoring trends, and process and soft-panel diagrams. On the other hand the operators carry out their actions over the power plant simulated on the operator-s stations; each one is also hosted in a PC. The main software of instructor and operator-s stations are executed on the same NS and displayed in PCs through graphical Interactive Process Diagrams (IDP). The geothermal multiple simulator has been installed in the Geothermal Simulation Training Center (GSTC) of the Comisi├│n Federal de Electricidad, (Federal Commission of Electricity, CFE), Mexico, and is being utilized as a part of the training courses for geothermal power plant operators.

Splitting Modified Donor-Cell Schemes for Spectral Action Balance Equation

The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating propagation velocity terms are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting modified donorcell scheme for avoiding stability problems and prove that it is consistent to the modified donor-cell scheme with same accuracy. The splitting modified donor-cell scheme was adopted to split the wave spectral action balance equation into four one-dimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-cores computer.

Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy

In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.

Kurtosis, Renyi's Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data

The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.

Design of a Robust Controller for AGC with Combined Intelligence Techniques

In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.

Parallel-computing Approach for FFT Implementation on Digital Signal Processor (DSP)

An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.

Real-Time Vision-based Korean Finger Spelling Recognition System

Finger spelling is an art of communicating by signs made with fingers, and has been introduced into sign language to serve as a bridge between the sign language and the verbal language. Previous approaches to finger spelling recognition are classified into two categories: glove-based and vision-based approaches. The glove-based approach is simpler and more accurate recognizing work of hand posture than vision-based, yet the interfaces require the user to wear a cumbersome and carry a load of cables that connected the device to a computer. In contrast, the vision-based approaches provide an attractive alternative to the cumbersome interface, and promise more natural and unobtrusive human-computer interaction. The vision-based approaches generally consist of two steps: hand extraction and recognition, and two steps are processed independently. This paper proposes real-time vision-based Korean finger spelling recognition system by integrating hand extraction into recognition. First, we tentatively detect a hand region using CAMShift algorithm. Then fill factor and aspect ratio estimated by width and height estimated by CAMShift are used to choose candidate from database, which can reduce the number of matching in recognition step. To recognize the finger spelling, we use DTW(dynamic time warping) based on modified chain codes, to be robust to scale and orientation variations. In this procedure, since accurate hand regions, without holes and noises, should be extracted to improve the precision, we use graph cuts algorithm that globally minimize the energy function elegantly expressed by Markov random fields (MRFs). In the experiments, the computational times are less than 130ms, and the times are not related to the number of templates of finger spellings in database, as candidate templates are selected in extraction step.

Unsupervised Texture Classification and Segmentation

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Investigation on Metalosalen Complexes Binding to DNA using Ab Initio Calculations

Geometry optimizations of metal complexes of Salen(bis(Salicylidene)1,2-ethylenediamine) were carried out at HF and DFT methods employing Lanl2DZ basis set. In this work structural, energies, bond lengths and other physical properties between Mn2+,Cu2+ and Ni2+ ions coordinated by salen–type ligands are examined. All calculations were performed using Gaussian 98W program series. To investigate local aromaticities, NICS were calculated at all centers of rings. The higher the band gap indicating a higher global aromaticity. The possible binding energies have been evaluated. We have evaluated Frequencies and Zero-point energy with freq calculation. The NICS(Nucleous Independent Chemical Shift) Results show Ni(II) complexes are antiaromatic and aromaticites of Mn(II) complexes are larger than Cu(II) complexes. The energy Results show Cu(II) complexes are stability than Mn(II) and Ni(II) complexes.

Classifier Based Text Mining for Neural Network

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

A Supervised Text-Independent Speaker Recognition Approach

We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.

Matrix Based Synthesis of EXOR dominated Combinational Logic for Low Power

This paper discusses a new, systematic approach to the synthesis of a NP-hard class of non-regenerative Boolean networks, described by FON[FOFF]={mi}[{Mi}], where for every mj[Mj]∈{mi}[{Mi}], there exists another mk[Mk]∈{mi}[{Mi}], such that their Hamming distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where 'n' represents the number of distinct primary inputs). The method automatically ensures exact minimization for certain important selfdual functions with 2n-1 points in its one-set. The elements meant for grouping are determined from a newly proposed weighted incidence matrix. Then the binary value corresponding to the candidate pair is correlated with the proposed binary value matrix to enable direct synthesis. We recommend algebraic factorization operations as a post processing step to enable reduction in literal count. The algorithm can be implemented in any high level language and achieves best cost optimization for the problem dealt with, irrespective of the number of inputs. For other cases, the method is iterated to subsequently reduce it to a problem of O(n-1), O(n-2),.... and then solved. In addition, it leads to optimal results for problems exhibiting higher degree of adjacency, with a different interpretation of the heuristic, and the results are comparable with other methods. In terms of literal cost, at the technology independent stage, the circuits synthesized using our algorithm enabled net savings over AOI (AND-OR-Invert) logic, AND-EXOR logic (EXOR Sum-of- Products or ESOP forms) and AND-OR-EXOR logic by 45.57%, 41.78% and 41.78% respectively for the various problems. Circuit level simulations were performed for a wide variety of case studies at 3.3V and 2.5V supply to validate the performance of the proposed method and the quality of the resulting synthesized circuits at two different voltage corners. Power estimation was carried out for a 0.35micron TSMC CMOS process technology. In comparison with AOI logic, the proposed method enabled mean savings in power by 42.46%. With respect to AND-EXOR logic, the proposed method yielded power savings to the tune of 31.88%, while in comparison with AND-OR-EXOR level networks; average power savings of 33.23% was obtained.