Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites

Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.

Topographic Arrangement of 3D Design Components on 2D Maps by Unsupervised Feature Extraction

As a result of the daily workflow in the design development departments of companies, databases containing huge numbers of 3D geometric models are generated. According to the given problem engineers create CAD drawings based on their design ideas and evaluate the performance of the resulting design, e.g. by computational simulations. Usually, new geometries are built either by utilizing and modifying sets of existing components or by adding single newly designed parts to a more complex design. The present paper addresses the two facets of acquiring components from large design databases automatically and providing a reasonable overview of the parts to the engineer. A unified framework based on the topographic non-negative matrix factorization (TNMF) is proposed which solves both aspects simultaneously. First, on a given database meaningful components are extracted into a parts-based representation in an unsupervised manner. Second, the extracted components are organized and visualized on square-lattice 2D maps. It is shown on the example of turbine-like geometries that these maps efficiently provide a wellstructured overview on the database content and, at the same time, define a measure for spatial similarity allowing an easy access and reuse of components in the process of design development.

Fusion Filters Weighted by Scalars and Matrices for Linear Systems

An optimal mean-square fusion formulas with scalar and matrix weights are presented. The relationship between them is established. The fusion formulas are compared on the continuous-time filtering problem. The basic differential equation for cross-covariance of the local errors being the key quantity for distributed fusion is derived. It is shown that the fusion filters are effective for multi-sensor systems containing different types of sensors. An example demonstrating the reasonable good accuracy of the proposed filters is given.

Existence of Multiple Positive Periodic Solutions to n Species Nonautonomous Lotka-Volterra Cooperative Systems with Harvesting Terms

In this paper, the existence of 2n positive periodic solutions for n species non-autonomous Lotka-Volterra cooperative systems with harvesting terms is established by using Mawhin-s continuation theorem of coincidence degree theory and matrix inequality. An example is given to illustrate the effectiveness of our results.

Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Mixed Matrix Membrane in Reverse Osmosis Water Treatment Process

novel and simple method is introduced for rapid and highly efficient water treatment by reverse osmosis (RO) method using multi-walled carbon nanotubes (MWCNTs) / polyacrylonitrile (PAN) polymer as a flexible, highly efficient, reusable and semi-permeable mixed matrix membrane (MMM). For this purpose, MWCNTs were directly synthesized and on-line purified by chemical vapor deposition (CVD) process, followed by directing the MWCNT bundles towards an ultrasonic bath, in which PAN polymer was simultaneously suspended inside a solid porous silica support in water at temperature to ~70 οC. Fabrication process of MMM was finally completed by hot isostatic pressing (HIP) process. In accordance with the analytical figures of merit, the efficiency of fabricated MMM was ~97%. The rate of water treatment process was also evaluated to 6.35 L min-1. The results reveal that, the CNT-based MMM is suitable for rapid treatment of different forms of industrial, sea, drinking and well water samples.

Iterative solutions to the linear matrix equation AXB + CXTD = E

In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXTD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative algorithm is quite efficient.

The Development of Smart School Condition Assessment Based on Condition Survey Protocol (CSP) 1 Matrix: A Literature Review

Building inspection is one of the key components of building maintenance. The primary purpose of performing a building inspection is to evaluate the building-s condition. Without inspection, it is difficult to determine a built asset-s current condition, so failure to inspect can contribute to the asset-s future failure. Traditionally, a longhand survey description has been widely used for property condition reports. Surveys that employ ratings instead of descriptions are gaining wide acceptance in the industry because they cater to the need for numerical analysis output. These kinds of surveys are also in keeping with the new RICS HomeBuyer Report 2009. In this paper, we propose a new assessment method, derived from the current rating systems, for assessing the specifically smart school building-s condition and rating the seriousness of each defect identified. These two assessment criteria are then multiplied to find the building-s score, which we called the Condition Survey Protocol (CSP) 1 Matrix. Instead of a longhand description of a building-s defects, this matrix requires concise explanations about the defects identified, thus saving on-site time during a smart school building inspection. The full score is used to give the building an overall rating: Good, Fair or Dilapidated.

State Feedback Controller Design via Takagi- Sugeno Fuzzy Model: LMI Approach

In this paper, we introduce a robust state feedback controller design using Linear Matrix Inequalities (LMIs) and guaranteed cost approach for Takagi-Sugeno fuzzy systems. The purpose on this work is to establish a systematic method to design controllers for a class of uncertain linear and non linear systems. Our approach utilizes a certain type of fuzzy systems that are based on Takagi-Sugeno (T-S) fuzzy models to approximate nonlinear systems. We use a robust control methodology to design controllers. This method not only guarantees stability, but also minimizes an upper bound on a linear quadratic performance measure. A simulation example is presented to show the effectiveness of this method.

A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix

In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.

Mobility Analysis of the Population of Rabat-Salé-Zemmour-Zaer

In this paper, we present the 2006 survey study origin destination and price that we carried out during 2006 fall in the area in the Moroccan region of Rabat-Salé-Zemmour-Zaer. The survey concerns the people-s characteristics, their displacements behavior and the price that they will be able to pay for a tramway ticket. The main objective is to study a set of relative features to the households and to their displacement's habits and to their choices among public and privet transport modes. A comparison between this survey results and that of the 1996's is made. A pricing scheme is also given according to the tram capacity. (The Rabat-Salé tramway is under construction right now and it will be operational beginning 2010).

Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays

This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.

Robust H∞ Filter Design for Uncertain Fuzzy Descriptor Systems: LMI-Based Design

This paper examines the problem of designing a robust H∞ filter for a class of uncertain fuzzy descriptor systems described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the uncertain nonlinear descriptor systems to have an H∞ performance are derived. To alleviate the ill-conditioning resulting from the interaction of slow and fast dynamic modes, solutions to the problem are given in terms of linear matrix inequalities which are independent of the singular perturbation ε, when ε is sufficiently small. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard uncertain nonlinear descriptor systems. A numerical example is provided to illustrate the design developed in this paper.

Lightweight Materials Obtained by Utilization of Agricultural Waste

Lightweight ceramic materials in the form of bricks and blocks are widely used in modern construction. They may be obtained by adding of rice husk, rye straw, etc, as porous forming materials. Rice husk is a major by-product of the rice milling industry. Its utilization as a valuable product has always been a problem. Various technologies for utilization of rice husk through biological and thermochemical conversion are being developed. The purpose of this work is to develop lightweight ceramic materials with clay matrix and filler of rice husk and examine their main physicomechanical properties. The results obtained allow to suppose that the materials synthesized on the basis of waste materials can be used as lightweight materials for construction purpose.

Phosphine Mortality Estimation for Simulation of Controlling Pest of Stored Grain: Lesser Grain Borer (Rhyzopertha dominica)

There is a world-wide need for the development of sustainable management strategies to control pest infestation and the development of phosphine (PH3) resistance in lesser grain borer (Rhyzopertha dominica). Computer simulation models can provide a relatively fast, safe and inexpensive way to weigh the merits of various management options. However, the usefulness of simulation models relies on the accurate estimation of important model parameters, such as mortality. Concentration and time of exposure are both important in determining mortality in response to a toxic agent. Recent research indicated the existence of two resistance phenotypes in R. dominica in Australia, weak and strong, and revealed that the presence of resistance alleles at two loci confers strong resistance, thus motivating the construction of a two-locus model of resistance. Experimental data sets on purified pest strains, each corresponding to a single genotype of our two-locus model, were also available. Hence it became possible to explicitly include mortalities of the different genotypes in the model. In this paper we described how we used two generalized linear models (GLM), probit and logistic models, to fit the available experimental data sets. We used a direct algebraic approach generalized inverse matrix technique, rather than the traditional maximum likelihood estimation, to estimate the model parameters. The results show that both probit and logistic models fit the data sets well but the former is much better in terms of small least squares (numerical) errors. Meanwhile, the generalized inverse matrix technique achieved similar accuracy results to those from the maximum likelihood estimation, but is less time consuming and computationally demanding.

Feature Selection with Kohonen Self Organizing Classification Algorithm

In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.

Improved Asymptotic Stability Analysis for Lure Systems with Neutral Type and Time-varying Delays

This paper investigates the problem of absolute stability and robust stability of a class of Lur-e systems with neutral type and time-varying delays. By using Lyapunov direct method and linear matrix inequality technique, new delay-dependent stability criteria are obtained and formulated in terms of linear matrix inequalities (LMIs) which are easy to check the stability of the considered systems. To obtain less conservative stability conditions, an operator is defined to construct the Lyapunov functional. Also, the free weighting matrices approach combining a matrix inequality technique is used to reduce the entailed conservativeness. Numerical examples are given to indicate significant improvements over some existing results.

Motivated Support Vector Regression with Structural Prior Knowledge

It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studies with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.

Discrete Polynomial Moments and Savitzky-Golay Smoothing

This paper presents unified theory for local (Savitzky- Golay) and global polynomial smoothing. The algebraic framework can represent any polynomial approximation and is seamless from low degree local, to high degree global approximations. The representation of the smoothing operator as a projection onto orthonormal basis functions enables the computation of: the covariance matrix for noise propagation through the filter; the noise gain and; the frequency response of the polynomial filters. A virtually perfect Gram polynomial basis is synthesized, whereby polynomials of degree d = 1000 can be synthesized without significant errors. The perfect basis ensures that the filters are strictly polynomial preserving. Given n points and a support length ls = 2m + 1 then the smoothing operator is strictly linear phase for the points xi, i = m+1. . . n-m. The method is demonstrated on geometric surfaces data lying on an invariant 2D lattice.

Use of Vegetation and Geo-Jute in Erosion Control of Slopes in a Sub-Tropical Climate

Protection of slope and embankment from erosion has become an important issue in Bangladesh. The constructions of strong structures require large capital, integrated designing, high maintenance cost. Strong structure methods have negative impact on the environment and sometimes not function for the design period. Plantation of vetiver system along the slopes is an alternative solution. Vetiver not only serves the purpose of slope protection but also adds green environment reducing pollution. Vetiver is available in almost all the districts of Bangladesh. This paper presents the application of vetiver system with geo-jute, for slope protection and erosion control of embankments and slopes. In-situ shear tests have been conducted on vetiver rooted soil system to find the shear strength. The shear strength and effective soil cohesion of vetiver rooted soil matrix are respectively 2.0 times and 2.1 times higher than that of the bared soil. Similar trends have been found in direct shear tests conducted on laboratory reconstituted samples. Field trials have been conducted in road embankment and slope protection with vetiver at different sites. During the time of vetiver root growth the soil protection has been accomplished by geo-jute. As the geo-jute degrades with time, vetiver roots grow and take over the function of geo-jutes. Slope stability analyses showed that vegetation increase the factor of safety significantly.