The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling

The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.

Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying

An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.

Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.

Installation Stability of Low Temperature Steel Mesh in LNG Storage

To enhance installation security, a LNG storage in Rudong of Jiangsu province was adopted as a practical work, and it was analyzed by nonlinear finite element method to research overall and local stability performance, as well as the stress and deformation under the action of wind load and self-weight. Results indicate that deformation is tiny when steel mesh maintains as an overall ring, and stress caused by vertical bending moment and tension of bottom tie wire are also in the safe range. However, axial forces of lap reinforcement in adjacent steel mesh exceed the ultimate bearing capacity of tie wire. Hence, tie wires are ruptured; single mesh loses lateral connection and turns into monolithic status as the destruction of overall structure. Further more, monolithic steel mesh is led to collapse by the damage of bottom connection. So, in order to prevent connection failure and enhance installation security, the overlapping parts of steel mesh should be taken more reliable measures.

Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process

Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.

Panel Zone Rigidity Effects on Special Steel Moment-Resisting Frames According to the Performance Based Design

The unanticipated destruct of more of the steel moment frames in Northridge earthquake, altered class of regard to the beamto- column connections in moment frames. Panel zone is one the significant part of joints which, it-s stiffness and rigidity has an important effect on the behavior and ductility of the frame. Specifically that behavior of panel zone has a very significant effect on the special moment frames. In this paper , meanwhile the relations for modeling of panel zone in frames are expressed , special moment frames with different spans and stories were studied in the way of performance-based design. The frames designed in according with Iranian steel building code. The effect of panel zone is also considered and in the case of non-existence of performance level, by changing in intimacies and parameter of panel zone, performance level is considered.

QCM-D Study of E-casein Adsorption on Bimodal PEG Brushes

Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. A better knowledge of the fouling process can be obtained by controlling the formation of the first protein layer at a solid surface. A number of methods have been investigated to inhibit adsorption of proteins. In this study, the adsorption kinetics of

Mechanism of Damping in Welded Structures using Finite Element Approach

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

An Algorithm for Detecting Seam Cracks in Steel Plates

In this study, we developed an algorithm for detecting seam cracks in a steel plate. Seam cracks are generated in the edge region of a steel plate. We used the Gabor filter and an adaptive double threshold method to detect them. To reduce the number of pseudo defects, features based on the shape of seam cracks were used. To evaluate the performance of the proposed algorithm, we tested 989 images with seam cracks and 9470 defect-free images. Experimental results show that the proposed algorithm is suitable for detecting seam cracks. However, it should be improved to increase the true positive rate.

A New Brazilian Friction-Resistant Low Alloy High Strength Steel – A Life Testing Approach

In this paper we will develop a sequential life test approach applied to a modified low alloy-high strength steel part used in highway overpasses in Brazil.We will consider two possible underlying sampling distributions: the Normal and theInverse Weibull models. The minimum life will be considered equal to zero. We will use the two underlying models to analyze a fatigue life test situation, comparing the results obtained from both.Since a major chemical component of this low alloy-high strength steel part has been changed, there is little information available about the possible values that the parameters of the corresponding Normal and Inverse Weibull underlying sampling distributions could have. To estimate the shape and the scale parameters of these two sampling models we will use a maximum likelihood approach for censored failure data. We will also develop a truncation mechanism for the Inverse Weibull and Normal models. We will provide rules to truncate a sequential life testing situation making one of the two possible decisions at the moment of truncation; that is, accept or reject the null hypothesis H0. An example will develop the proposed truncated sequential life testing approach for the Inverse Weibull and Normal models.

Dye-Sensitized Solar Cell by Plasma Spray

This paper aims to scale up Dye-sensitized Solar Cell (DSSC) production using a commonly available industrial material – stainless steel - and industrial plasma equipment. A working DSSC electrode formed by (1) coating titania nanotube (TiO2 NT) film on 304 stainless steel substrate using a plasma spray technique; then, (2) filling the nano-pores of the TiO2 NT film using a TiF4 sol-gel method. A DSSC device consists of an anode absorbed photosensitive dye (N3), a transparent conductive cathode with platinum (Pt) nano-catalytic particles adhered to its surface, and an electrolytic solution sealed between the anode and the transparent conductive cathode. The photo-current conversion efficiency of the DSSC sample was tested under an AM 1.5 Solar Simulator. The sample has a short current (Isc) of 0.83 mA cm-2, open voltage (Voc) of 0.81V, filling factor (FF) of 0.52, and conversion efficiency (η) of 2.18% on a 0.16 cm2 DSSC work-piece.

Dry Sliding Wear Behavior of Epoxy-Rubber Dust Composites

Composite pins of rubber dust collected from tyre retreading centres of trucks, cars and buses etc.and epoxy with weight percentages of 10. 15, and 20 % of rubber (weight fractions of 9, 13 and 17 % respectively) have been prepared in house with the help of a split wooden mould. The pins were tested in a pin-on-disc wear monitor to determine the co-efficient of friction and weight losses with varying speeds, loads and time. The wear volume and wear rates have also been found out for all these three specimens.. It is observed that all the specimens have exhibited very low coefficient of friction and low wear rates under dry sliding condition. Out of the above three samples tested, the specimen with 10 % rubber dust by weight has shown lowest wear rates. However a peculiar result i.e decreasing trend has been obtained with 20% reinforcement of rubber in epoxy while rubbed against steel at varying speeds. This might have occurred due to high surface finish of the disc and formation of a thin transfer layer from the composite

A Detailed Experimental Study of the Springback Anisotropy of Three Metals using the Stretching-Bending Process

Springback is a significant problem in the sheet metal forming process. When the tools are released after the stage of forming, the product springs out, because of the action of the internal stresses. In many cases the deviation of form is too large and the compensation of the springback is necessary. The precise prediction of the springback of product is increasingly significant for the design of the tools and for compensation because of the higher ratio of the yield stress to the elastic modulus. The main object in this paper was to study the effect of the anisotropy on the springback for three directions of rolling: 0°, 45° and 90°. At the same time, we highlighted the influence of three different metallic materials: Aluminum, Steel and Galvanized steel. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to the direction of rolling. We also showed the role of lubrication in the reduction of the springback. Moreover, in this work, we have studied important characteristics in deep drawing process which is a springback. We have presented defaults that are showed in this process and many parameters influenced a springback. Finally, our results works lead us to understand the influence of grains orientation with different metallic materials on the springback and drawing some conclusions how to concept deep drawing tools. In addition, the conducted work represents a fundamental contribution in the discussion the industry application.

Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel

An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.

Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace

In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribution in the slab throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings, including the radiant heat transfer among the slabs, the skids, the hot combustion gases and the furnace wall as well as the gas convective heat transfer in the furnace. With the introduction of the mathematical formulations validation of the present numerical model is conducted by calculating two example problems of blocked-off and nongray gas radiative heat transfer. After discussing the formation and growth of the scale on the slab surface, slab heating characteristics with scale is investigated in terms of temperature rise with time. 

Inelastic Strength of Laterally Unsupported Top- Loaded Built-Up Slender Beams

Lateral-torsional buckling (LTB) is one of the phenomenae controlling the ultimate bending strength of steel Ibeams carrying distributed loads on top flange. Built-up I-sections are used as main beams and distributors. This study investigates the ultimate bending strength of such beams with sections of different classes including slender elements. The nominal strengths of the selected beams are calculated for different unsupported lengths according to the Provisions of the American Institute of Steel Constructions (AISC-LRFD). These calculations are compared with results of a nonlinear inelastic study using accurate FE model for this type of loading. The goal is to investigate the performance of the provisions for the selected sections. Continuous distributed load at the top flange of the beams was applied at the FE model. Imperfections of different values are implemented to the FE model to examine their effect on the LTB of beams at failure, and hence, their effect on the ultimate strength of beams. The study also introduces a procedure for evaluating the performance of the provisions compared with the accurate FEA results of the selected sections. A simplified design procedure is given and recommendations for future code updates are made.

A Parametric Assessment of Friction Damper in Eccentric Braced Frame

In This paper, the behavior of eccentric braced frame (EBF) is studied with replacing friction damper (FD) in confluence of these braces, in 5 and 10-storey steel frames. For FD system, the main step is to determine the slip load. For this reason, the performance indexes include roof displacement, base shear, dissipated energy and relative performance should be investigated. In nonlinear dynamic analysis, the response of structure to three earthquake records has been obtained and the values of roof displacement, base shear and column axial force for FD and EBF frames have been compared. The results demonstrate that use of the FD in frames, in comparison with the EBF, substantially reduces the roof displacement, column axial force and base shear. The obtained results show suitable performance of FD in higher storey structure in comparison with the EBF.

Deicing and Corrosive Performances of Calcium Acetate Deicer Made from Bamboo-Vinegar

Calcium magnesium acetate (CMA) is environmentally benign deicing chemicals that can replace sodium chloride that is widely used on roads and highways at present for snow and ice control to provide safe driving conditions during winter. The price of CMA from petroleum-derived acetic acid is quite expensive. The bamboo vinegar is the by-product from bamboo charcoal production. The bamboo vinegar was used to prepare calcium acetate as raw materials, and its deicing and corrosive performances were studied in this paper. The results show that the freezing temperature of calcium acetate is lower than that of sodium chloride when they have same molar concentration, the deicing performance of calcium acetate is better than that of sodium chloride when they have same moles, while the deicing performance of sodium chloride is better than that of calcium acetate. The corrosion of sodium chloride on iron-nail and steel-nail is larger than that of calcium acetate whether they have same mass concentration or same molar concentration, and the corrosion of sodium chloride and calcium acetate on iron-nail is larger than that on steel-nail, and calcium acetate almost hasn't corrosion on steel-nail.

Investigation of Tool Temperature and Surface Quality in Hot Machining of Hard-to-Cut Materials

Production of hard-to-cut materials with uncoated carbide cutting tools in turning, not only cause tool life reduction but also, impairs the product surface roughness. In this paper, influence of hot machining method were studied and presented in two cases. Case1-Workpiece surface roughness quality with constant cutting parameter and 300 ºC initial workpiece surface temperature. Case 2- Tool temperature variation when cutting with two speeds 78.5 (m/min) and 51 (m/min). The workpiece material and tool used in this study were AISI 1060 steel (45HRC) and uncoated carbide TNNM 120408-SP10(SANDVIK Coromant) respectively. A gas flam heating source was used to preheating of the workpiece surface up to 300 ºC, causing reduction of yield stress about 15%. Results obtained experimentally, show that the method used can considerably improved surface quality of the workpiece.