Simulating the Dynamics of Distribution of Hazardous Substances Emitted by Motor Engines in a Residential Quarter

This article is dedicated to development of mathematical models for determining the dynamics of concentration of hazardous substances in urban turbulent atmosphere. Development of the mathematical models implied taking into account the time-space variability of the fields of meteorological items and such turbulent atmosphere data as vortex nature, nonlinear nature, dissipativity and diffusivity. Knowing the turbulent airflow velocity is not assumed when developing the model. However, a simplified model implies that the turbulent and molecular diffusion ratio is a piecewise constant function that changes depending on vertical distance from the earth surface. Thereby an important assumption of vertical stratification of urban air due to atmospheric accumulation of hazardous substances emitted by motor vehicles is introduced into the mathematical model. The suggested simplified non-linear mathematical model of determining the sought exhaust concentration at a priori unknown turbulent flow velocity through non-degenerate transformation is reduced to the model which is subsequently solved analytically.

A Multi-Phase Methodology for Investigating Localisation Policies within the GCC: The Hotel Industry in the KSA and the UAE

Due to a high unemployment rate among local people and a high reliance on expatriate workers, the governments in the Gulf Co-operation Council (GCC) countries have been implementing programmes of localisation (replacing foreign workers with GCC nationals). These programmes have been successful in the public sector but much less so in the private sector. However, there are now insufficient jobs for locals in the public sector and the onus to provide employment has fallen on the private sector. This paper is concerned with a study, which is a work in progress (certain elements are complete but not the whole study), investigating the effective implementation of localisation policies in four- and five-star hotels in the Kingdom of Saudi Arabia (KSA) and the United Arab Emirates (UAE). The purpose of the paper is to identify the research gap, and to present the need for the research. Further, it will explain how this research was conducted. Studies of localisation in the GCC countries are under-represented in scholarly literature. Currently, the hotel sectors in KSA and UAE play an important part in the countries’ economies. However, the total proportion of Saudis working in the hotel sector in KSA is slightly under 8%, and in the UAE, the hotel sector remains highly reliant on expatriates. There is therefore a need for research on strategies to enhance the implementation of the localisation policies in general and in the hotel sector in particular. Further, despite the importance of the hotel sector to their economies, there remains a dearth of research into the implementation of localisation policies in this sector. Indeed, as far as the researchers are aware, there is no study examining localisation in the hotel sector in KSA, and few in the UAE. This represents a considerable research gap. Regarding how the research was carried out, a multiple case study strategy was used. The four- and five-star hotel sector in KSA is one of the cases, while the four- and five-star hotel sector in the UAE is the other case. Four- and five-star hotels in KSA and the UAE were chosen as these countries have the longest established localisation policies of all the GCC states and there are more hotels of these classifications in these countries than in any of the other Gulf countries. A literature review was carried out to underpin the research. The empirical data were gathered in three phases. In order to gain a pre-understanding of the issues pertaining to the research context, Phase I involved eight unstructured interviews with officials from the Saudi Commission for Tourism and Antiquities (three interviewees); the Saudi Human Resources Development Fund (one); the Abu Dhabi Tourism and Culture Authority (three); and the Abu Dhabi Development Fund (one). In Phase II, a questionnaire was administered to 24 managers and 24 employees in four- and five-star hotels in each country to obtain their beliefs, attitudes, opinions, preferences and practices concerning localisation. Unstructured interviews were carried out in Phase III with six managers in each country in order to allow them to express opinions that may not have been explored in sufficient depth in the questionnaire. The interviews in Phases I and III were analysed using thematic analysis and SPSS will be used to analyse the questionnaire data. It is recommended that future research be undertaken on a larger scale, with a larger sample taken from all over KSA and the UAE rather than from only four cities (i.e., Riyadh and Jeddah in KSA and Abu Dhabi and Sharjah in the UAE), as was the case in this research.

Development of New Control Techniques for Vibration Isolation of Structures using Smart Materials

In this paper, the effects of the restoring force device on the response of a space frame structure resting on sliding type of bearing with a restoring force device is studied. The NS component of the El - Centro earthquake and harmonic ground acceleration is considered for earthquake excitation. The structure is modeled by considering six-degrees of freedom (three translations and three rotations) at each node. The sliding support is modeled as a fictitious spring with two horizontal degrees of freedom. The response quantities considered for the study are the top floor acceleration, base shear, bending moment and base displacement. It is concluded from the study that the displacement of the structure reduces by the use of the restoring force device. Also, the peak values of acceleration, bending moment and base shear also decreases. The simulation results show the effectiveness of the developed and proposed method.

Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid

Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.

A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading

Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.

Designing an Irregular Tensegrity as a Monumental Object

A novel and versatile numerical technique to solve a self-stress equilibrium state is adopted herein as a form-finding procedure for an irregular tensegrity structure. The numerical form-finding scheme of a tensegrity structure uses only the connectivity matrix and prototype tension coefficient vector as the initial guess solution. Any information on the symmetrical geometry or other predefined initial structural conditions is not necessary to get the solution in the form-finding process. An eight-node initial condition example is presented to demonstrate the efficiency and robustness of the proposed method in the form-finding of an irregular tensegrity structure. Based on the conception from the form-finding of an eight-node irregular tensegrity structure, a monumental object is designed by considering the real world situation such as self-weight, wind and earthquake loadings.

Optical Properties of Some A2BCl4 Type Chlorides

Efficient luminescence is reported for the first time in Eu2+ activated double Chlorides A2BCl4 (A=Alkali metal, B=Alkaline earth element). A simple wet-chemical preparation is described. Emission intensities are comparable to that of the commercial phosphor. Excitation covers near UV region. These phosphors may be useful for applications like solid state lighting, scintillation detectors and X-ray storage using photo-stimulable phosphors.

An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes

Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.

Improving Carbon Sequestration in Concrete: A Literature Review

Due to urbanization, trees and plants which covered a great land mass of the earth and are an excellent carbon dioxide (CO2) absorber through photosynthesis are being replaced by several concrete based structures. It is therefore important to have these cement based structures absorb the large volume of carbon dioxide which the trees would have removed from the atmosphere during their useful lifespan. Hence the need for these cement based structures to be designed to serve other useful purposes in addition to shelter. This paper reviews the properties of Sodium carbonate and sugar as admixtures in concrete with respect to improving carbon sequestration in concrete.

Sustainable Development in Construction

Semnan is a city in semnan province, northern Iran with a population estimated at 119,778 inhabitants. It is the provincial capital of semnan province. Iran is a developing country and construction is a basic factor of developing too. Hence, Semnan city needs to a special programming for construction of buildings, structures and infrastructures. Semnan municipality tries to begin this program. In addition to, city has some historical monuments which can be interesting for tourists. Hence, Semnan inhabitants can benefit from tourist industry. Optimization of Energy in construction industry is another activity of this municipality and the inhabitants who execute these regulations receive some discounts. Many parts of Iran such as semnan are located in highly seismic zones and structures must be constructed safe e.g., according to recent seismic codes. In this paper opportunities of IT in construction industry of Iran are investigated in three categories. Pre-construction phase, construction phase and earthquake disaster mitigation are studied. Studies show that information technology can be used in these items for reducing the losses and increasing the benefits. Both government and private sectors must contribute to this strategic project for obtaining the best result.

Dynamic Response of Wind Turbines to Theoretical 3D Seismic Motions Taking into Account the Rotational Component

We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turbine, represented by a simple finite element model. Von Mises stress values at different heights of the tower are used to study the dynamical structural response to a set of synthetic ground motion time histories

Need to Implement the Environmental Accounting Education for Sustainable Development: An Overview

Environmental accounting is a recent phenomenon in the modern jurisprudence. It may reflect the corporate governance mechanisms in line with the natural resources and environmental sound management and administration systems in any country of the world. It may be a corporate focused on the improving of the environmental quality. But it is often identified that it is ignored due to some reasons such as unconsciousness, lack of ethical education etc. At present, the world community is very much concerned about the state of the environmental accounting and auditing systems as it bears sustainability on the mother earth for our generations. It is one of the important tools for understanding on the role played by the natural environment in the economy. It provides adequate data which is highlighted both in the contribution of natural resources to economic well-being as well as the costs imposed by pollution or resource degradation. It can play a critical role as on be a part of the many international environmental organizations such as IUCN, WWF, PADELIA, WRI etc.; as they have been taking many initiatives for ensuring the environmental accouting for our competent survivals. The global state actors have already taken some greening accounting initiatives under the forum of the United Nations Division for Sustainable Dedevolpment, the United Nations Statistical Division, the United Nations Conference on Environment and development known as Earth Summit in Rio de Janeiro, Johannesburg Conference 2002 etc. This study will provide an overview of the environmental accounting education consisting of 25 respondents based on the primary and secondary sources.

Temporal Change of Fractal Dimension of Explosion Earthquakes and Harmonic Tremors at Semeru Volcano, East Java, Indonesia, using Critical Exponent Method

Fractal analyses of successive event of explosion earthquake and harmonic tremor recorded at Semeru volcano were carried out to investigate the dynamical system regarding to their generating mechanism. The explosive eruptions accompanied by explosion earthquakes and following volcanic tremor which are generated by continuous emission of volcanic ash. The fractal dimension of successive event of explosion and harmonic tremor was estimated by Critical Exponent Method (CEM). It was found that the method yield a higher fractal dimension of explosion earthquakes and gradually decrease during the occurrence of harmonic tremor, and can be considerably as correlated complexity of the source mechanism from the variance of fractal dimension.

Study on Radio Link Availability in Millimeter Wave Range

In this paper, the link quality in SHF and EHF ranges are studied. In order to achieve high data rate higher frequencies must be used – centimeter waves (SHF), millimeter waves (EHF) or optical range. However, there are significant problem when a radio link work in that diapason – rain attenuation and attenuation in earth-s atmosphere. Based on statistical rain rates data for Bulgaria, the link availability can be determined, depending on the working frequency, the path length and the Power Budget of the link. For the calculations of rain attenuation and atmosphere-s attenuation the ITU recommendations are used.

Bifurcation Analysis of Horizontal Platform System

Horizontal platform system (HPS) is popularly applied in offshore and earthquake technology, but it is difficult and time-consuming for regulation. In order to understand the nonlinear dynamic behavior of HPS and reduce the cost when using it, this paper employs differential transformation method to study the bifurcation behavior of HPS. The numerical results reveal a complex dynamic behavior comprising periodic, sub-harmonic, and chaotic responses. Furthermore, the results reveal the changes which take place in the dynamic behavior of the HPS as the external torque is increased. Therefore, the proposed method provides an effective means of gaining insights into the nonlinear dynamics of horizontal platform system.

Performance Verification of Seismic Design Codes for RC Frames

In this study, a frame work for verification of famous seismic codes is utilized. To verify the seismic codes performance, damage quantity of RC frames is compared with the target performance. Due to the randomness property of seismic design and earthquake loads excitation, in this paper, fragility curves are developed. These diagrams are utilized to evaluate performance level of structures which are designed by the seismic codes. These diagrams further illustrate the effect of load combination and reduction factors of codes on probability of damage exceedance. Two types of structures; very high important structures with high ductility and medium important structures with intermediate ductility are designed by different seismic codes. The Results reveal that usually lower damage ratio generate lower probability of exceedance. In addition, the findings indicate that there are buildings with higher quantity of bars which they have higher probability of damage exceedance. Life-cycle cost analysis utilized for comparison and final decision making process.

Assessment the Effect of Setback in Height of Frame on Reinforcement Structures

Ambiguities in effects of earthquake on various structures in all earthquake codes would necessitate more study and research concerning influential factors on dynamic behavior. Previous studies which were done on different features in different buildings play a major role in the type of response a structure makes to lateral vibrations. Diagnosing each of these irregularities can help structure designers in choosing appropriate setbacks for decreasing possible damages. Therefore vertical setback is one of the irregularity factors in the height of the building where can be seen in skyscrapers and hotels. Previous researches reveal notable changes in the place of these setbacks showing dynamic response of the structure. Consequently analyzing 48 models of concrete frames for 3, 6 and 9 stories heights with three different bays in general shape of a surface decline by height have been constructed in ETABS2000 software, and then the shape effect of each and every one of these frames in period scale has been discussed. The result of this study reveals that not only mass, stiffness and height but also shape of the frame is influential.

Hazard Rate Estimation of Temporal Point Process, Case Study: Earthquake Hazard Rate in Nusatenggara Region

Hazard rate estimation is one of the important topics in forecasting earthquake occurrence. Forecasting earthquake occurrence is a part of the statistical seismology where the main subject is the point process. Generally, earthquake hazard rate is estimated based on the point process likelihood equation called the Hazard Rate Likelihood of Point Process (HRLPP). In this research, we have developed estimation method, that is hazard rate single decrement HRSD. This method was adapted from estimation method in actuarial studies. Here, one individual associated with an earthquake with inter event time is exponentially distributed. The information of epicenter and time of earthquake occurrence are used to estimate hazard rate. At the end, a case study of earthquake hazard rate will be given. Furthermore, we compare the hazard rate between HRLPP and HRSD method.

Using LabVIEW Software in an Introductory Residual Current Device Course

Laboratory classes in Electrical Engineering are often hampered by safety issues, as students have to work on high voltage lines. One solution is to make use of virtual laboratory simulations, to help students understand the concepts taught in their coursework. In this context, we have conceived and implemented virtual lab experiments in connection with the study of earthing arrangements. In this work, software was developed, which aid student in understanding the working of a residual current device (RCD) in a TT earthing system. Various parameters, such as the earthing resistances, leakage currents and harmonics were included for a TT system with RCD connection.

Effects of Sea Water Level Fluctuations on Seismic Response of Jacket Type Offshore Platforms

To understand the seismic behavior of the offshore structures, the dynamic interaction of the water-structure-soil should be assessed. In this regard the role of the water dynamic properties in magnifying or reducing of the effects of earthquake induced motions on offshore structures haven't been investigated in precise manner in available literature. In this paper the sea water level fluctuations effects on the seismic behavior of a sample of offshore structures has been investigated by emphasizing on the water-structure interaction phenomenon. For this purpose a two dimensional finite element model of offshore structures as well as surrounded water has been developed using ANSYS software. The effect of soil interaction with embedded pile foundation has been imposed by using a series of nonlinear springs in horizontal and vertical directions in soil-piles contact points. In the model, the earthquake induced motions have been applied on springs and consequently the motions propagated upward to the structure and surrounded water. As a result of numerical study, the horizontal deformations of the offshore deck as well as internal force and buckling coefficient in structural elements have been recorded and controlled with and without water presence. In part of study a parametric study has been accomplished on sea water level fluctuations and effect of this parameter has been studied on the aforementioned numerical results.