Analysis on Urban Form and Evolution Mechanism of High-Density City: Case Study of Hong Kong

Along with large population and great demands for urban development, Hong Kong serves as a typical high-density city with multiple altitudes, advanced three-dimensional traffic system, rich city open space, etc. This paper contributes to analyzing its complex urban form and evolution mechanism from three aspects of view, separately as time, space and buildings. Taking both horizontal and vertical dimension into consideration, this paper provides a perspective to explore the fascinating process of growing and space folding in the urban form of high-density city, also as a research reference for related high-density urban design.

Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Embedding the Dimensions of Sustainability into City Information Modelling

The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city’, and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embed sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management.

The Potential of ‘Comprehensive Assessment System for Built Environment Efficiency for Cities’ in Developing Country: Evidence of Myanmar

The growing cities of the developing country are characterized by rapid growth and poor infrastructure management inviting and accelerating relative environmental problems. Even though the movements of the sustainability had already been developed around the world, it is still increasing in the developing countries to plant sustainable practices. Aligned with the sustainable development actions, many sustainable assessment tools are also developed to rate and evaluate the sustainability performances through the building to community level. Among them, CASBEE is developed by Japanese organizations and is recognized as one of the international well-known assessment tools. The main purpose of the study is to find out the potential of CASBEE tool reflecting sustainability city level performances in developing countries. The research framework was designed with three major phases: Quantitative Approach, Qualitative Approach and Evaluation Reflection. The first two approaches were based on the investigation of tool’s contents and indicators by means of three sustainable dimensions and sustainability categories. To know the reality and reflection on developing country, Pathein City from Myanmar was selected and evaluated by 2012 version of CASBEE for Cities. The evaluation practices went through assigned indicators and the evaluation outcome presents the performances of Pathein city’s environmental efficiency as a very good in current conditions. The results of this study indicate that the indicators of this tool have balance coverage among three dimensions of sustainability but it has not yet counted enough for some indicators like location, infrastructure and institution which are relative to society dimension. In the developing countries’ cities, the most critical issues on development such as affordable housing and heritage preservation which are already planted in Pathein City but the tool does not account for those issues. Moreover, in some of the indicators, the benchmark and the weighting coefficient are strongly linked to the system birth region. By means of this study, it can be stated that CASBEE for Cities would be potential for delivering sustainable city level development in developing country especially in Myanmar along with further inclusion of the indicators.

Surface Topography Measurement by Confocal Spectral Interferometry

Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.

Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Female Work Force Participation and Women Empowerment in Haryana

India is known as a country of diversity regarding the social, cultural and wide geographical variations. In the north and north-west part of the country, the strong patriarchal norms and the male dominance based social structure are the important constructs. Patriarchal social setup adversely affects the women’s social and economic wellbeing and hence in that social structure women are considered as second level citizen. Work participation rate of women has directly linked to the development of society or household. Haryana is one of the developed states of India, still being ahead in economic prosperity, much lagged behind in gender-based equality and male dominance in all dimensions of life. The position of women in the Haryana is no better than the other states of India. Haryana state has the great difference among the male-female sex ratio which is a serious concern for social science research as a demographic problem for the state. Now women are requiring for their holistic empowerment and that will take care of them for an enabling process that must lead to their economic as well as social transformation. Hence, the objective of the paper is to address the role of sex ratio, women literacy and her work participation in the process of their empowerment with special attention to the gender perspective. The study used the data from Census of India from 1991 to 2011. This paper will examine the regional disparity of sex ratio, literacy rate and female work participation and the improvement of empowerment of women in the state of Haryana. This paper will suggest the idea for focusing much intensively on the issues of women empowerment through enhancement of her education, workforce participation and social participation with people participation and holistic approach.

Use of Magnesium as a Renewable Energy Source

The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.

Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant

In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.

Effect of Twin Cavities on the Axially Loaded Pile in Clay

Presence of cavities in soil predictably induces ground deformation and changes in soil stress, which might influence adjacent existing pile foundations, though the effect of twin cavities on a nearby pile needs to be understood. This research is an attempt to identify the behaviour of piles subjected to axial load and embedded in cavitied clayey soil. A series of finite element modelling were conducted to investigate the performance of piled foundation located in such soils. The validity of the numerical simulation was evaluated by comparing it with available field test and alternative analytical model. The study involved many parameters such as twin cavities size, depth, spacing between cavities, and eccentricity of cavities from the pile axis on the pile performance subjected to axial load. The study involved many cases; in each case, a critical value has been found in which cavities’ presence has shown minimum impact on the behaviour of pile. Load-displacement relationships of the affecting parameters on the pile behaviour were presented to provide helpful information for designing piled foundation situated near twin underground cavities. It was concluded that the presence of the cavities within the soil mass reduces the ultimate capacity of pile. This reduction differs according to the size and location of the cavity.

Assessing the Impact of Quinoa Cultivation Adopted to Produce a Secure Food Crop and Poverty Reduction by Farmers in Rural Pakistan

Main purpose of this study was to assess adoption level of farmers for quinoa cultivation after they had been taught through training and visit extension approach. At this time of the 21st century, population structure, climate change, food requirements and eating habits of people are changing rapidly. In this scenario, farmers must play their key role in sustainable crop development and production through adoption of new crops that may also be helpful to overcome the issue of food insecurity as well as reducing poverty in rural areas. Its cultivation in Pakistan is at the early stages and there is a need to raise awareness among farmers to grow quinoa crops. In the middle of the 2015, a training and visit extension approach was used to raise awareness and convince farmers to grow quinoa in the area. During training and visit extension program, 80 farmers were randomly selected for the training of quinoa cultivation. Later on, these farmers trained 60 more farmers living into their neighborhood. After six months, a survey was conducted with all 140 farmers to assess the impact of the training and visit program on adoption level of respondents for the quinoa crop. The survey instrument was developed with the help of literature review and other experts of the crop. Validity and reliability of the instrument were checked before complete data collection. The data were analyzed by using SPSS. Multiple regression analysis was used for interpretation of the results from the survey, which indicated that factors like information/ training, change in agronomic and plant protection practices play a key role in the adoption of quinoa cultivation by respondents. In addition, the model explains more than 50% of variation in the adoption level of respondents. It is concluded that farmers need timely information for improved knowledge of agronomic and plant protection practices to adopt cultivation of the quinoa crop in the area.

Identifying Factors for Evaluating Livability Potential within a Metropolis: A Case of Kolkata

Livability is a holistic concept whose factors include many complex characteristics and levels of interrelationships among them. It has been considered as people’s need for public amenities and is recognized as a major element to create social welfare. The concept and principles of livability are essential for recognizing the significance of community well-being. The attributes and dimensions of livability are also important aspects to measure the overall quality of environment. Livability potential is mainly considered as the capacity to develop into the overall well-being of an urban area in future. The intent of the present study is to identify the prime factors to evaluate livability potential within a metropolis. For ground level case study, the paper has selected Kolkata Metropolitan Area (KMA) as it has wide physical, social, and economic variations within it. The initial part of the study deals with detailed literature review on livability and its significance of evaluating its potential within a metropolis. The next segment is dedicated for identifying the primary factors which would evaluate livability potential within a metropolis. In pursuit of identifying primary factors, which have a direct impact on urban livability, this study delineates the metropolitan area into various clusters, having their distinct livability potential. As a final outcome of the study, variations of livability potential of those selected clusters are highlighted to explain the complexity of the metropolitan development.

The Profitability Management Mechanism of Leather Industry-Based on the Activity-Based Benefit Approach

Strengthening core competitiveness is the main goal of enterprises in a fierce competitive environment. Accurate cost information is a great help for managers in dealing with operation strategies. This paper establishes a profitability management mechanism that applies the Activity-Based Benefit approach (ABBA) to solve the profitability for each customer from the market. ABBA provides financial and non-financial information for the operation, but also indicates what resources have expired in the operational process. The customer profit management model shows the level of profitability of each customer for the company. The empirical data were gathered from a case company operating in the leather industry in Taiwan. The research findings indicate that 30% of customers create little profit for the company as a result of asking for over 5% of sales discounts. Those customers ask for sales discount because of color differences of leather products. This paper provides a customer’s profitability evaluation mechanism to help enterprises to greatly improve operating effectiveness and promote operational activity efficiency and overall operation profitability.

Autonomic Sonar Sensor Fault Manager for Mobile Robots

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Design of Parity-Preserving Reversible Logic Signed Array Multipliers

Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search

Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.

Relationship between Functionality and Cognitive Impairment in Older Adult Women from the Southeast of Mexico

This study explores the relationship between the level of functionality and cognitive impairment in older adult women from the south-east of Mexico. It is a descriptive, cross-sectional study; performed with 172 participants in total who attended a health institute and live in Merida, Yucatan Mexico. After a non-probabilistic sampling, Barthel and Pfeiffer scales were applied. The results show statistically significant correlation between the cognitive impairment (Pfeiffer) and the levels of independence and function (Barthel) (r =0.489; p =0.001). Both determine a dependence level so they need either a little or a lot of help. Society needs that the older woman be healthy and that the professionals of mental health develop activities to prevent and rehabilitate because cognitive impairment and function are directly related with the quality of life.

Experimental Studies of Sigma Thin-Walled Beams Strengthen by CFRP Tapes

The review of selected methods of strengthening of steel structures with carbon fiber reinforced polymer (CFRP) tapes and the analysis of influence of composite materials on the steel thin-walled elements are performed in this paper. The study is also focused to the problem of applying fast and effective strengthening methods of the steel structures made of thin-walled profiles. It is worth noting that the issue of strengthening the thin-walled structures is a very complex, due to inability to perform welded joints in this type of elements and the limited ability to applying mechanical fasteners. Moreover, structures made of thin-walled cross-section demonstrate a high sensitivity to imperfections and tendency to interactive buckling, which may substantially contribute to the reduction of critical load capacity. Due to the lack of commonly used and recognized modern methods of strengthening of thin-walled steel structures, authors performed the experimental studies of thin-walled sigma profiles strengthened with CFRP tapes. The paper presents the experimental stand and the preliminary results of laboratory test concerning the analysis of the effectiveness of the strengthening steel beams made of thin-walled sigma profiles with CFRP tapes. The study includes six beams made of the cold-rolled sigma profiles with height of 140 mm, wall thickness of 2.5 mm, and a length of 3 m, subjected to the uniformly distributed load. Four beams have been strengthened with carbon fiber tape Sika CarboDur S, while the other two were tested without strengthening to obtain reference results. Based on the obtained results, the evaluation of the accuracy of applied composite materials for strengthening of thin-walled structures was performed.

Basket Option Pricing under Jump Diffusion Models

Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.

Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.