Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil

Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.

Fuzzy Scan Method to Detect Clusters

The classical temporal scan statistic is often used to identify disease clusters. In recent years, this method has become as a very popular technique and its field of application has been notably increased. Many bioinformatic problems have been solved with this technique. In this paper a new scan fuzzy method is proposed. The behaviors of classic and fuzzy scan techniques are studied with simulated data. ROC curves are calculated, being demonstrated the superiority of the fuzzy scan technique.

Robust Regression and its Application in Financial Data Analysis

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.

Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Malaysia Folk Literature in Early Childhood Education

Malay Folk Literature in early childhood education served as an important agent in child development that involved emotional, thinking and language aspects. Up to this moment not much research has been carried out in Malaysia particularly in the teaching and learning aspects nor has there been an effort to publish “big books." Hence this article will discuss the stance taken by university undergraduate students, teachers and parents in evaluating Malay Folk Literature in early childhood education to be used as big books. The data collated and analyzed were taken from 646 respondents comprising 347 undergraduates and 299 teachers. Results of the study indicated that Malay Folk Literature can be absorbed into teaching and learning for early childhood with a mean of 4.25 while it can be in big books with a mean of 4.14. Meanwhile the highest mean value required for placing Malay Folk Literature genre as big books in early childhood education rests on exemplary stories for undergraduates with mean of 4.47; animal fables for teachers with a mean of 4.38. The lowest mean value of 3.57 is given to lipurlara stories. The most popular Malay Folk Literature found suitable for early children is Sang Kancil and the Crocodile, followed by Bawang Putih Bawang Merah. Pak Padir, Legends of Mahsuri, Origin of Malacca, and Origin of Rainbow are among the popular stories as well. Overall the undergraduates show a positive attitude toward all the items compared to teachers. The t-test analysis has revealed a non significant relationship between the undergraduate students and teachers with all the items for the teaching and learning of Malay Folk Literature.

Transmitter Macrodiversity in Multihopping- SFN Based Algorithm for Improved Node Reachability and Robust Routing

A novel idea presented in this paper is to combine multihop routing with single-frequency networks (SFNs) for a broadcasting scenario. An SFN is a set of multiple nodes that transmit the same data simultaneously, resulting in transmitter macrodiversity. Two of the most important performance factors of multihop networks, node reachability and routing robustness, are analyzed. Simulation results show that our proposed SFN-D routing algorithm improves the node reachability by 37 percentage points as compared to non-SFN multihop routing. It shows a diversity gain of 3.7 dB, meaning that 3.7 dB lower transmission powers are required for the same reachability. Even better results are possible for larger networks. If an important node becomes inactive, this algorithm can find new routes that a non-SFN scheme would not be able to find. Thus, two of the major problems in multihopping are addressed; achieving robust routing as well as improving node reachability or reducing transmission power.

Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification

A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.

Dynamic TDMA Slot Reservation Protocol for QoS Provisioning in Cognitive Radio Ad Hoc Networks

In this paper, we propose a dynamic TDMA slot reservation (DTSR) protocol for cognitive radio ad hoc networks. Quality of Service (QoS) guarantee plays a critically important role in such networks. We consider the problem of providing QoS guarantee to users as well as to maintain the most efficient use of scarce bandwidth resources. According to one hop neighboring information and the bandwidth requirement, our proposed protocol dynamically changes the frame length and the transmission schedule. A dynamic frame length expansion and shrinking scheme that controls the excessive increase of unassigned slots has been proposed. This method efficiently utilizes the channel bandwidth by assigning unused slots to new neighboring nodes and increasing the frame length when the number of slots in the frame is insufficient to support the neighboring nodes. It also shrinks the frame length when half of the slots in the frame of a node are empty. An efficient slot reservation protocol not only guarantees successful data transmissions without collisions but also enhance channel spatial reuse to maximize the system throughput. Our proposed scheme, which provides both QoS guarantee and efficient resource utilization, be employed to optimize the channel spatial reuse and maximize the system throughput. Extensive simulation results show that the proposed mechanism achieves desirable performance in multichannel multi-rate cognitive radio ad hoc networks.

Trust and Reliability for Public Sector Data

The public sector holds large amounts of data of various areas such as social affairs, economy, or tourism. Various initiatives such as Open Government Data or the EU Directive on public sector information aim to make these data available for public and private service providers. Requirements for the provision of public sector data are defined by legal and organizational frameworks. Surprisingly, the defined requirements hardly cover security aspects such as integrity or authenticity. In this paper we discuss the importance of these missing requirements and present a concept to assure the integrity and authenticity of provided data based on electronic signatures. We show that our concept is perfectly suitable for the provisioning of unaltered data. We also show that our concept can also be extended to data that needs to be anonymized before provisioning by incorporating redactable signatures. Our proposed concept enhances trust and reliability of provided public sector data.

Comparative Survey of Object Serialization Techniques and the Programming Supports

This paper compares six approaches of object serialization from qualitative and quantitative aspects. Those are object serialization in Java, IDL, XStream, Protocol Buffers, Apache Avro, and MessagePack. Using each approach, a common example is serialized to a file and the size of the file is measured. The qualitative comparison works are investigated in the way of checking whether schema definition is required or not, whether schema compiler is required or not, whether serialization is based on ascii or binary, and which programming languages are supported. It is clear that there is no best solution. Each solution makes good in the context it was developed.

Extended “2D-RIB“ for Impression-Based Satisfactory Retrieval and its Evaluation

Recently, lots of researchers are attracted to retrieving multimedia database by using some impression words and their values. Ikezoe-s research is one of the representatives and uses eight pairs of opposite impression words. We had modified its retrieval interface and proposed '2D-RIB' in the previous work. The aim of the present paper is to improve his/her satisfaction level to the retrieval result in the 2D-RIB. Our method is to extend the 2D-RIB. One of our extensions is to define and introduce the following two measures: 'melody goodness' and 'general acceptance'. Another extension is three types of customization menus. The result of evaluation using a pilot system is as follows. Both of these two measures 'melody goodness' and -general acceptance- can contribute to the improvement. Moreover, it is effective if we introduce the customization menu which enables a retrieval person to reduce the strictness level of retrieval condition in an impression pair based on his/her need.

Sensitivity Analysis in Power Systems Reliability Evaluation

In this paper sensitivity analysis is performed for reliability evaluation of power systems. When examining the reliability of a system, it is useful to recognize how results change as component parameters are varied. This knowledge helps engineers to understand the impact of poor data, and gives insight on how reliability can be improved. For these reasons, a sensitivity analysis can be performed. Finally, a real network was used for testing the presented method.

Use of Ecommerce Websites in Developing Countries

The purpose of this study is to investiagte the use of the ecommerce website in Indonesia as a developing country. The ecommerce website has been identified having the significant impact on business activities in particular solving the geographical problem for islanded countries likes Indonesia. Again, website is identified as a crucial marketing tool. This study presents the effect of quality and features on the use and user satisfaction employing ecommerce websites. Survey method for 115 undergraduate students of Management Department in Andalas University who are attending Management Information Systems (SIM) class have been undertaken. The data obtained is analyzed using Structural Equation Modeling (SEM) using SmartPLS program. This result found that quality of system and information, feature as well satisfaction influencing the use ecommerce website in Indonesia contexts.

Improving Classification in Bayesian Networks using Structural Learning

Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.

ANN Models for Microstrip Line Synthesis and Analysis

Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.

Alertness States Classification By SOM and LVQ Neural Networks

Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.

Clustering Methods Applied to the Tracking of user Traces Interacting with an e-Learning System

Many research works are carried out on the analysis of traces in a digital learning environment. These studies produce large volumes of usage tracks from the various actions performed by a user. However, to exploit these data, compare and improve performance, several issues are raised. To remedy this, several works deal with this problem seen recently. This research studied a series of questions about format and description of the data to be shared. Our goal is to share thoughts on these issues by presenting our experience in the analysis of trace-based log files, comparing several approaches used in automatic classification applied to e-learning platforms. Finally, the obtained results are discussed.

A Novel Fuzzy-Neural Based Medical Diagnosis System

In this paper, application of artificial neural networks in typical disease diagnosis has been investigated. The real procedure of medical diagnosis which usually is employed by physicians was analyzed and converted to a machine implementable format. Then after selecting some symptoms of eight different diseases, a data set contains the information of a few hundreds cases was configured and applied to a MLP neural network. The results of the experiments and also the advantages of using a fuzzy approach were discussed as well. Outcomes suggest the role of effective symptoms selection and the advantages of data fuzzificaton on a neural networks-based automatic medical diagnosis system.

Forecasting Malaria Cases in Bujumbura

The focus in this work is to assess which method allows a better forecasting of malaria cases in Bujumbura ( Burundi) when taking into account association between climatic factors and the disease. For the period 1996-2007, real monthly data on both malaria epidemiology and climate in Bujumbura are described and analyzed. We propose a hierarchical approach to achieve our objective. We first fit a Generalized Additive Model to malaria cases to obtain an accurate predictor, which is then used to predict future observations. Various well-known forecasting methods are compared leading to different results. Based on in-sample mean average percentage error (MAPE), the multiplicative exponential smoothing state space model with multiplicative error and seasonality performed better.

Data Mining in Oral Medicine Using Decision Trees

Data mining has been used very frequently to extract hidden information from large databases. This paper suggests the use of decision trees for continuously extracting the clinical reasoning in the form of medical expert-s actions that is inherent in large number of EMRs (Electronic Medical records). In this way the extracted data could be used to teach students of oral medicine a number of orderly processes for dealing with patients who represent with different problems within the practice context over time.